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Partial identification of nonlinear peer 
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Abstract 

This paper examines inference on social interactions models in the presence of missing data on outcomes. In these 
models, missing data on outcomes imply an incomplete data problem on both the endogenous variable and the 
regressors. However, getting a sharp estimate of the partially identified coefficients is computationally difficult. Using 
a monotonicity property of the peer effects and a mean independence condition of individual decisions on the miss-
ing data, I show partial identification results for the binary choice peer effect model. A Monte Carlo exercise then sum-
marizes the computational time and the accuracy performance of the interval estimators under some calibrations.
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1  Introduction
In models of social interactions, the individual behav-
ior depends both on individual characteristics and on 
aggregate characteristics of members of the group of 
which the agent is a member (Advani & Malde, 2018), 
integrating sociological concepts and economic think-
ing (Blume et  al. 2010). Important applications of peer 
effects models have been developed for education (Sacer-
dote, 2001, Cipollone & Rosolia, 2007, Lalive & Cattaneo, 
2009, Sojourner, 2013, Ammermueller & Pischke, 2009, 
Madeira, 2018), health behaviors (Bruhin et al., 2020, Bai-
ley et  al., 2021), employment (Roth, 2020) or migration 
(Slotwinski et al., 2019).

This work analyzes inference on nonlinear peer effects 
models in the presence of missing data. There are many 
situations (for example, drug use, teenage risk profiles, 
sexual behavior) where respondents might not be willing 

to reveal their personal experience, creating problems of 
missing data in the study of social interactions in these 
settings. Most social interaction studies use the aver-
age outcome of each group as an explanatory variable; 
therefore, missing outcome data imply that we face both 
a problem of missing outcome values and an undeter-
mined regressor, aggravating the identification problem. 
It is, therefore, important to extend the robustness of the 
social interaction estimators to scenarios of missing data.

In the linear case, Manski (1993, 2000) showed that it 
is difficult to distinguish between the effects of endog-
enous social interactions and the impact of measures of 
exogenous group quality. Several works analyze identifi-
cation of peer effects in the linear case (Advani & Malde, 
2018, Sojourner, 2013, Ammermueller & Pischke, 2009). 
These works analyze partial and point identification of 
the linear peer effects model with missing data on out-
comes. Sojourner (2013) shows that if individuals are 
randomly assigned to each group; then, it is possible to 
point-identify the true coefficient for the peer effects 
variable. Ammermueller and Pischke (2009) show that 
missing data on peers create measurement error for the 
group variables and using an analysis similar to Hausman 
(2001) find upper and lower bounds for the true peer 
effect coefficient of the linear model. The authors then 
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apply an instrument for the peer effects variable to obtain 
point identification.

However, several economic decisions such as discrete 
choices require nonlinear models (Blume et  al., 2010). 
Nonlinear settings for peer effects include smoking 
behavior (Krauth, 2006), high school truancy, cell phone 
ownership (Kooreman & Soetevent, 2007) or college life 
(Sacerdote, 2001). Brock and Durlauf (2007) present a 
very general model of peer effects in a discrete choice set-
ting, showing that it is possible to identify asymptotically 
both exogenous and endogenous peer effects under the 
assumption of random group assignment and no missing 
data.

I extend the identification results of Brock and Durlauf 
(2002, 2007) to the case of missing outcomes. Using an 
incomplete data approach proposed by Horowitz and 
Manski (2006), it is possible to get sharp bounds for the 
coefficients of this model with missing data, but this 
method can be time-consuming for larger peer groups. 
Therefore, I propose an estimator to obtain non-sharp 
bounds for this model based on Manski and Tamer 
(2002) interval regressors’ approach. My suggested 
approach extends the interval regressors approach of 
Manski and Tamer (2002) by showing that it can easily 
be extended for a case with both interval regressors and 
missing outcomes. If a discrete choice model verifies 
three important properties—interval values (I), mean 
independence (MI), monotonicity (M)—then it is possi-
ble to obtain non-sharp bounds for the true coefficients 
of the model. The interval values (I) regressor assumption 
is trivially satisfied by discrete choice models with peer 
effects, since the average of the discrete choices in a peer 
group is bounded between 0 and 1. The mean independ-
ence (MI) is also quite natural in the peer effects model, 
since it implies that the width of the identification inter-
val does not matter if one conditions on the true value 
of the average outcome. This assumption appears natural 
if the agents know the true values of the average choices 
in their peer groups even if the econometrician only 
observes the group with some missing data. The third 
assumption, monotonicity (M), implies that the aver-
age outcome of each agent is increasing with the average 
group outcome. This assumption is trivially satisfied in 
the parametric discrete choice models, and it can also be 
consistent with many semi-parametric or nonparametric 
models. A minimum distance estimator is proposed. I 
also propose a bootstrap method to estimate confidence 
intervals for the true coefficients. A similar estimator can 
be easily applied to any parametric model with missing 
outcomes and interval regressors.

I then show a set of Monte Carlo exercises with fully 
observed information to characterize the accuracy of 
the peer effects estimators even if the identification 

assumptions are satisfied. The Monte Carlo exercises 
include a wide range of different group sizes and different 
sample sizes for both the logit and the linear case. The 
Monte Carlo simulations include estimators for the cases 
of closed peer groups (groups in which all members are 
peers of each other) and non-closed groups (with each 
individual having peers from outside the group). Further-
more, I consider the case in which the individual is part 
of his own peer group and the case in which the individ-
ual is not part of its own peer group. The linear case is 
only shown for non-closed groups (which is required for 
identification, as shown in Bramoullé, Djebbari and For-
tin 2009).

I then apply the Manski–Tamer and Horowitz–Manski 
estimators to the logit peer effects models in the presence 
of missing outcomes. The results show that the Manski–
Tamer estimator can be hundreds of times faster than the 
Horowitz–Manski estimator even with just a few missing 
values such as 10 missing outcomes. The computation 
time of the Horowitz–Manski estimator could be much 
larger with a few additional missing observations.

This work focuses on the case in which missing infor-
mation on missing outcomes also implies missing infor-
mation or an interval regressor for the peer effect in 
order to be clear about this effect. This approach could 
also be easily generalized to other cases that also include 
missing control variables for the peer group members 
and which would also imply missing regressors or inter-
val regressors. The case for other missing regressors 
would merely imply more combinations of possible data-
sets for the missing values for the Horowitz and Manski 
(2006) and additional interval regressors for the Manski 
and Tamer (2002) approaches suggested in this article.

This article is organized as follows: Section  2 shows 
how the interval regressors approach of Manski and 
Tamer (2002) can be easily extended for a case that also 
has missing outcomes. Section 3 explains the calibration 
of the Monte Carlo exercises. Section  4 then summa-
rizes the Monte Carlo results in the absence of missing 
data. The section starts by showing that the exogenous 
coefficients (given by the constant, exogenous variable 
affecting individual behavior, contextual effects group 
variable) have a fast convergence to the true parameter 
values, whether the model has endogenous peer effects 
or not. The same simulations show that the endogenous 
peer effect coefficient has a much slower convergence to 
its true value, presenting a high bias and standard devia-
tion, even without any missing data. Section  5 shows 
the Monte Carlo exercises with missing data, analyzing 
the performance of the Horowitz–Manski and Manski–
Tamer approaches. The results show that the Horow-
itz and Manski (2006) approach presents a considerable 
computational time. The section also summarizes the 
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estimated interval results for all the coefficients, includ-
ing both the endogenous peer effects parameter and the 
exogenous coefficients parameters. Finally, Sect.  6 sum-
marizes the main results and an appendix shows the 
proofs of the main propositions.

2 � Identification of discrete choice models 
with peer effects

2.1 � A parametric discrete choice model
Let yi ∈ {0, 1} represent individual i outcomes, Xi ∈ RK  
the individual exogenous variables, g = 1, ....,G denotes 
the groups, and Yg ∈ RQ is the set of exogenous variables 
for each group. I represent average group behavior as 
pi,g =

1

ng(i)

n
∑

j=1,j∈g(i)
1(yj = 1) , where 

ng(i) =
n
∑

j=1

1(j ∈ g(i)) is the number of people in agent i’s 

group.
Brock and Durlauf (2002) presented a parametric mul-

tinomial model of choice in the presence of social inter-
actions, giving conditions for identification in the 
presence of fully observed data. Individual choice is 
determined by latent utility, Vi = hi + Jpi,g(i) − ǫi . The 
term ǫi represents an idiosyncratic term (such as an indi-
vidual taste factor) unobserved to the econometrician. ǫi 
has a known monotonic parametric distribution, Fǫ(.) . In 
this specification, hi represents the components of utility 
affected only by exogenous variables, 
hi = k + bXi + dYg(i) . The observable group variables 
Yg(i) for the contextual peer effects, correlated group 
effects or neighborhood variables (Manski, 1993) can 
include the mean values of the individual variables of the 
other group members. One can further specify 
Yg(i) =

1

ng(i)

n
∑

j=1,j∈g(i)
Xj in the case of individuals that are 

part of their own peer group, or in alternative, 
Yg(i) =

1

ng(i) − 1

n
∑

j=1,j∈g(i),j �=i

Xj in the case in which the 

individual i is excluded from its own peer effect. In this 
model, the probability of choosing a positive outcomes is 
given by:

It is possible that several values of pi,g might solve expres-
sion (1) due to multiple equilibria corresponding to self-
consistent behaviors in the population (Brock & Durlauf, 
2002).

This discrete choice model is quite parsimonious and 
includes all the main features of peer effects models. The 
term Yg is usually interpreted as “contextual group effects” 
(Manski, 1993), meaning the gains each member of the 

(1)

Pr(yi = 1) = Pr(Vi ≥ 0) = Pr(ǫi ≤ hi + Jpi,g )

= Fǫ(hi + Jpi,g ).

group has due to exogenous characteristics of the group. 
For example, students of a certain school could be doing 
well because the school has good facilities and teachers. 
The term pi,g represents the “endogenous group effect” 
since it represents the feedback effect that group perfor-
mance has on each one of its members. In this case, stu-
dents of a certain school may be more likely to apply for 
college because the other students are also applying.

Brock and Durlauf (2002) show that this model is point-
identified by assuming two conditions: 

	(i)	 Xi , Yg(i) , pi,g are not collinear and Yg has unbounded 
support;

	(ii)	 ǫi are independent and identical distributed across 
individuals and are independent of Xi and Yg(i).

The independence assumption of ǫi can be relaxed when 
the group g(i) of each individual is not entirely closed 
(for example, your neighbors have neighbors that are not 
neighbors of you). In this case, the “peers of your peers” 
provide extra variation that can be used for identification 
(Bramoullé et al. 2009). For now, this article will keep the 
assumption that the peer groups are closed and therefore 
j ∈ g(i) implies that i ∈ g(j).

2.2 � Partial identification in the case of missing outcome 
information

If all the data are observed, one can estimate the parame-
ters by using a maximum likelihood estimator (MLE):

Now assume z ∈ {0, 1} determines when y is unobserved 
or observed. For simplicity, I assume that Xi and Yg(i) are 
always observed, but the missing information on some 
outcomes yi implies that pi,g is not point-identified, 
although pi,g can be bounded within a sharp interval. The 
number of missing observations in the sample is given by 

nz=0 =
n
∑

j=1

1(zj = 0) . Let m(i) =
i

j=1

1(zj = 0) denote the 

order of yi in the sample of observations with missing 
values, with m(i) = ∅ if zi = 1 . I define 
yz=0 ≡ {ym, (m = 1, ..., nz=0)} as the vector collection of 
all missing outcome values in the sample. This vector 
belongs to the space given by � ≡ {0, 1}nz=0 . Let a ∈ � be 
a feasible vector for the missing outcome values. I define 
yai = yi if zi = 1 and yai = a(m(i)) if zi = 0 . In the same 

way, I define pai,g =
1

ni

n
∑

j=1,j∈g(i)
1(yaj = 1) as the group 

average outcome under the vector of missing values 
yz=0 = a.

(2)

θ̂ ≡ (k̂ , b̂, d̂, Ĵ ) = arg max
θ

N
∑

i=1

yi ln(Fǫ(hi + Jpi,g ))

+ (1− yi) ln(1− Fǫ(hi + Jpi,g )).
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Let H(θ) be the identified set of θ . Elements of this set 
can be identified by repeatedly plugging in feasible values 
for the missing data, a ∈ � , and computing the parame-
ters of interest. We can therefore study the set of values 
consistent with the observed data and the assumed 
model given any feasible distribution of the missing data. 
For a specific combination of the missing data values, 
yz=0 = a ∈ � , one can estimate the coefficients 
θ̂ (a) = arg maxθ

N
∑

i=1

yai ln(Fǫ (hi + Jpai,g ))+ (1− yai ) ln(1− Fǫ(hi + Jpai,g )) . 

It is possible therefore to obtain H(θ) as Ĥ(θ) ≡ {θ̂ (a), 
for all a ∈ �} . For finite samples, it is possible to obtain 
confidence intervals for the true coefficient parameters θ 
by using the bootstrap procedure of Imbens and Manski 
(2004). Another alternative is to get confidence intervals 
for the identified set, H(θ) , by using a subsampling pro-
cedure described in Chernozhukov et al. (2007).

This plug-in strategy is fairly general and easy to 
implement. It can essentially work on any model that is 
proven to be identified and solvable. The difficulty of this 
approach, however, is that it is computationally demand-
ing. Notice that if Pr(z = 0) > 0 , then the set of alterna-
tive values increases exponentially with N. Therefore, as 
N grows large this approach may require several alterna-
tive computations of θ̂ (a) to obtain a good estimate of 
H(θ).

Here, I show that less computationally intensive strate-
gies are possible. Note that the Brock and Durlauf model 
is monotonic in the group outcome, pi,g . Also, the regres-
sor pi,g of each individual can be estimated to be inside 
an interval. Assume for simplicity we keep the group 
intervals pi,g ∈ [pLi,g , pUi,g ] fixed, but we allow the values of 
each missing individual outcome yi | zi = 0 vary between 
{0, 1} . This approach gives us non-sharp bounds for the 
coefficients θ , since we are not taking into account that 
changing the individual yi | zi = 0 also has an effect on 
the interval of pi,g . However, together with the mono-
tonicity property of the peer effects model it is possible 
to specify a convenient estimator for these non-sharp 
bounds. For this reason, I generalize the approach of 
Manski and Tamer (2002) to the case of both missing 
outcomes and interval regressors.

2.3 � Using monotonicity and mean independence 
assumptions

In the discrete choice case, outcomes y are bounded 
between 0 and 1. This guarantees the inter-
val property (I) of the regressor, pi,g , so we have 
pi,g ∈ [0, 1] . It is easy to specify sharp bounds for 
the group average, pi,g = E[y | g(i)] . Let us define 
pLg(i) = EL[y | g(i)] = E[y | g , z = 1]P(z = 1 | g) and 
pUg(i) = EU [y | g(i)] = E[y | g , z = 1]P(z = 1 | g)+ P(z = 0 | g) . 

Then, the law of total probability gives us sharp bounds 
for the value of the group average, pi,g , as expressed in 
Proposition (1):

Proposition 1   pLg(i) ≤ pi,g ≤ pUg(i).

Now, I denote V g
x = (pi,g ,Yg , x) , W

g
x = (pLg(i), p

U
g(i),Yg , x) , 

W
g
0 = (pLg(i),Yg , x) , and Wg

1 = (pUg(i),Yg , x) . I will show 
that under certain conditions it is possible to obtain a 
partial interval for E[y | V g

x ] by using E[y | Wg
0 ] and 

E[y | Wg
1 ].

Note that the model defined in expression (1) is mean 
independent of the missing data properties zj . This guar-
antees the following mean independence (MI) property:

(MI) Fǫ(. | Wg
x , pi,g ) = Fǫ(. | pi,g ,Yg , x) = Fǫ(.) , where 

the first equality is given by expression (1) and the sec-
ond one is obtained after applying assumption (ii) which 
specifies ǫi as independent and identical distributed 
across individuals and independent of Xi and Yg(i).

The MI assumption is not testable, but seems realistic 
under many scenarios. If individuals actually observed 
average group behavior and act using this knowledge, 
then individual outcomes are not affected by miss-
ing data. For example, teenagers may know how many 
smokers or drug users exist in their group, even if the 
researcher does not. However, the MI assumption could 
be invalid if the individuals react more or less to the 
choices of their unreported peers.

Expression (1)   also has the group endogenous effect, J, 
specified as a constant parameter. Since J is constant and 
Fǫ(.) is monotonic, this guarantees the monotonicity (M) 
property of E[y | V g

x ] in all its arguments. Therefore, the 
IMMI (interval, monotonicity, and mean independence 
property) described in Manski and Tamer (2002) holds 
for this model.

By applying the law of total probability, we get sharp 
bounds for E[y | Wg

x ].

Proposition 2   EL[y | Wg
x ] ≤ E[y | Wg

x ] ≤ EU [y | Wg
x ] , 

where EL[y | W
g
x ] = E[y | W

g
x , z = 1] P(z = 1 | Wg

x ) and 
EU [y | W

g
x ] = E[y | W

g
x , z = 1] P(z = 1 | Wg

x )+ P(z = 0 | Wg
x ).

Proposition 3 shows that it is possible to achieve exact 
identification of our parameters if and only if some 
groups in the population have no missing data at all.

Proposition 3  Let θ ≡ (k , b, d, J ) and c ≡ (c1, c2, c3, c4) ∈ C .  
Denote also hci = c1 + c′2Xi + c′3Yg(i) , V c,U

i = hci + c4p
U
g(i) 

and V c,L
i = hci + c4p

L
g(i) . Let
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Then, θ is only identified relative to c if and only if 
P[V (c)] > 0.

Now, I characterize the identification region and pre-
sent a minimum distance estimator for the parameters’ 
identification set in the presence of missing outcome 
data. Lemma 1 forms the basis for the estimator. It shows 
that there is a parametric solution θ to the problem that 
fits within the bounds of the data moments ( EL[y | Wg

x ] , 
EU [y | Wg

x ] ), and therefore the solution is non-empty. It 
then characterizes the solution as being a convex inter-
val and with a given expression that can be estimated. 
The importance of the interval solution being a convex 
region is important, because it implies that the prob-
lem is well behaved and many optimization methods 
for the econometric estimators only work with con-
vex regions. Convexity implies that, for instance, if θL 
and θU (with θU ≥ θL ), then any other parameter given 

by θ∗ = θL(1− α)+ α , with α ∈ [0, 1] , is also a solu-
tion. This makes it convenient for optimization methods 
because it implies that there is a single convex identified 
interval, withθU ∈ [θL, θU ] . If the identified sets were not 
convex, then empirical researchers could find several 
unconnected regions with blanks in between. It would 
even make it difficult to determine if the entire identified 
set had been found by the researcher, since there could be 
more identified regions in other areas.

Lemma 1  The identification region for θ is non-empty, 
convex and equivalent to

where Fǫ(Wg
1,i) = Fǫ (hi + JpUg(i)) = Fǫ (k + b′Xi + d′Yg(i) + JpUg(i)) and 

Fǫ(W
g
0,i) = Fǫ(hi + JpLg(i)) = Fǫ(k + b′Xi + d′Yg(i) + JpLg(i)) .

Proposition 4 gives the basic finding on identification of 
parametric regression models. It suggests that the identifi-
cation region can be found by a minimum distance estima-
tor HN (θ) , which uses the empirical analogs of the bounds 

V (c) = [(Wg
x ) : Fǫ(hci + c4p

U
g(i)) < EL[y | Wg

x ]
⋃

EU [y | Wg
x ] < Fǫ(h

c
i + c4p

L
g(i))].

H(θ) = arg min
c∈C

∫

1[Fǫ(Wg
1
) < EL[y | Wg

x ]] [Fǫ(Wg
1
)

− EL[y | Wg
x ]]2 + 1[Fǫ(Wg

0
) > EU [y | Wg

x ]] [Fǫ(Wg
0
)

− EU [y | Wg
x ]]2dP(Wg

x ),

EN
L [y | Wg

x,i] and EN
U [y | Wg

x,i] in order to find the identi-
fied set for θ . Note that it is relevant for the minimum dis-
tance optimizer to search for the parameter values that fit 
within the intervals given by EN

L [y | Wg
x,i] and EN

U [y | Wg
x,i] . 

In general, the researcher cannot just obtain two estima-
tors given by replacing the missing values with zeros or 
replacing the missing values with ones, because that could 
imply establishing that a correlation between pUg(i) and the 
other variables ( Xi and Yg(i) ) is either very low or very high 
in order to explain a large amount of zeros and ones. The 
minimum distance estimator must therefore search for the 
parameter values until the region that fits the empirical 
analogs is found.

Proposition 4   A suggested estimator for the identifica-
tion region H(θ) would be

where EN
L [y | Wg

x,i] and EN
U [y | Wg

x,i] are consistent esti-
mators of EL[y | Wg

x,i] and EU [y | Wg
x,i] , respectively. It 

is possible to take into account finite-sample error in the 
estimates of these intervals by using the bootstrap tech-
nique described by Imbens and Manski (2004). A similar 
identification strategy is possible for the semi-parametric 
peer effects model developed in Brock and Durlauf (2007), 
although such a discontinuous estimator does not have 
a convenient asymptotic distribution and therefore does 
not allow to obtain a finite-sample confidence interval by 
using the bootstrap method of Imbens and Manski (2004).

2.4 � Horowitz and Manski’s estimator for functionals 
of incomplete data

Let us define a parametric estimator

with Hi = (Xi,Yg(i),wi) being the vector of control vari-
ables that are completely observed. Again assume yi,z=1 
is observed and yi,z=0 is not observed. The estimator 
obtained from the true dataset can be expressed as:

HN (θ) = arg min
c∈C

1

N

N
∑

i=1

1[Fǫ(Wg
1,i) < EN

L [y | Wg
x,i]] [Fǫ(W

g
1,i)− EN

L [y | Wg
x,i]]2

+ 1[Fǫ(Wg
0,i) > EN

U [y | Wg
x,i]] [Fǫ(W

g
0,i)− EN

U [y | Wg
x,i]]2

θ = arg min
θ

N
∑

i=1

f (yi, ȳi,g ,Hi)
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The econometrician does not observe the values of yi,z=0 , 
but it knows that each value of y belongs to a finite set ϒ 
with V elements. One possible estimator can be obtained 
from one of the possible ways of imputing the missing 
dataset:

with vi,z=0 ∈ ϒ being a specified value for each possible 
missing observation i. Since there are V possibilities for 
each yi,z=0 , there are MD = VNz=0 possible datasets that 
could be validly imputed, with Nz=0 =

∑N
i=11(zi = 0) 

denoting the number of missing observations. Then, if 
one computes the estimator θc across all the possible 
imputations for yi,z=0 , the econometrician will find that 
θ ∈ {θ1, ., θc, .., θMD} ; therefore, a sharp interval for θ can 
be obtained as:

This sharp interval obtained from the infimum and 
supremum estimates obtained across all the possible 
realizations of the dataset can be easily applied to any 
parametric estimator (Horowitz & Manski 2006), such as 
the parametric discrete choice model or the linear model 
of peer effects exposed before. Note that the number of 
possible estimates MD increases rapidly with just a few 
missing observations. For instance, in the discrete choice 
setting ( V = 2 , since y can be 0 or 1), the number of pos-
sible datasets would reach MD = 215 = 32768 possible 
datasets with just 15 missing observations.

In the appendix, I show that similar econometric 
approaches can be applied to linear social interactions’ 
models that have bounded outcomes, assuming that 
identification is obtained through the observation of 
non-closed groups.

θ = arg min
θ

N
∑

i=1,z=1

f (yi,z=1, ȳi,g

=
1

ng(i)

∑ng(i)
j=1

yj,z=1 + yj,z=0,Hi)+

N
∑

i=1,z=0

f (yi,z=0, ȳi,g

=
1

ng(i)

∑ng(i)
j=1

yj,z=1 + yj,z=0,Hi).

θc = arg min
θ

N
∑

i=1,z=1

f (yi,z=1, ȳi,g

=
1

ng(i)

∑ng(i)
j=1

yj,z=1 + vj,z=0,Hi)+

N
∑

i=1,z=0

f (vi,z=0, ȳi,g

=
1

ng(i)

∑ng(i)
j=1

yj,z=1 + vj,z=0,Hi),

(3)θ ∈ [inf {θ1, ., θc, .., θMD}, sup {θ1, ., θc, .., θMD}].

3 � Monte Carlo exercises
3.1 � The simulated models
The discrete choice model of social interactions for simu-
lation s = 1, .., S is obtained as follows. The discrete peer 
effects model of each simulation s is specified to be a 
logit, Pr(yi(s) = 1) = �(k + bXi(s)+ dYg(i)(s)+ Jpi,g (s)) , 
with �(x) = exp(x)

1+exp(x) . For simplicity, the simulations con-
sider that the coefficients 

{

k , b, d, J
}

 are constants for all 
simulations and that all the groups are the same, that is, 
ng(i) = ng . Each simulated observation is obtained with 
the specified set of coefficients: k = −2 , b = 1 , d = 0.5 , 
J = 0.5 . The observable control variables Xi(s) and Yg(i)(s) 
are simulated as independent pseudo-standard normal 
numbers, with Xi(s) having different values for each indi-
vidual i in each simulation s and Yg(i)(s) having different 
values for each group g in each simulation s. For each 
simulation s, each observation is then obtained from 
pseudo-uniform numbers: 
yi(s) = 1(εi(s) ≤ k + bXi(s)+ dYg(i)(s)+ Jpi,g (s)) , with 
εi(s) being pseudo-standard logistic random numbers 
with mean 0 and standard deviation π/

√
3.

The exercises consider an alternative with closed 
groups, with pi,g (s) given entirely by the endogenous 
decisions of the members of each group g = 1, ..,G , and 
an alternative with non-closed groups with each indi-
vidual i reporting a value wi(s) for the peer effect of the 
members outside the group. The exercise considers 
wi(s) as given by a pseudo-uniform number independ-
ent across i and s. Furthermore, the peer effects of the 
observed group members are considered in two ver-
sions with the first one considering the individual as 
parts of its own peer group, 

n
∑

j=1,j∈g(i)
1(yj(s) = 1)/ng , 

while a second version considers that the individual is 
not part of its own peer effect 

n
∑

j=1,j∈g(i),j �=i

1(yj(s) = 1)/(ng − 1) . The reason for these 

two alternatives is that considering the individual as 
part of its own peer effect introduces an obvious prob-
lem, since pi,g (s) includes yi(s) which is a function of 
the unobserved idiosyncratic error εi(s) . Therefore, it is 
likely that estimators that consider individuals as part 
of their own peer effect should present a bias due to the 
control variable being correlated with the unobserved 
error (Wooldridge 2010).

Therefore, the variable pi,g (s) is implemented in four 
alternatives: 

	(i)	 Closed groups with individual i as part of his own 

peer group, pi,g (s) =

n
∑

j=1,j∈g(i)
1(yj(s) = 1)

ng
;
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	(ii)	 Closed groups with individuals excluded from their 

own peer group, pi,g (s) =

n
∑

j=1,j∈g(i),j �=i

1(yj(s) = 1)

ng − 1
;

	(iii)	 Non-closed groups with individual i as part of his 
own peer group and with the outside peer group of 
the same size as the group g, 

pi,g (s) =
ngwi(s)+

n
∑

j=1,j∈g(i)
1(yj(s) = 1)

ng + ng
;

	(iv)	 Non-closed groups with individual i excluded from 
their own peer group and with the outside peer 
group of the same size as the group g, 

pi,g (s) =
ngwi(s)+

n
∑

j=1,j∈g(i),j �=i

1(yj(s) = 1)

ng + ng − 1
.

The Monte Carlo exercises consider several combinations 
of group size with ng = 5, 10, 25 members and several 
numbers of groups with G = 50, 100, 200, 500, 1000, 2500 . 
The total sample size in terms of individuals is given by 
N = G × ng . Since some exercises take a long time (in 
particular, the Horowitz–Manski estimator takes a longer 
time than the other with higher values of missing data), 
all the Monte Carlo exercises are done with just 50 simu-
lations, s = 1, .., S , with S = 50.

To summarize the results from the Monte Carlo simu-
lations, I denote θ as the vector with the true value of the 
parameters, θ =

{

k , b, d, J
}

 , while θ̂s denotes the estimate 
obtained in each simulation. The average estimate across 
all the simulations is obtained as θ̄ =

∑

s θ̂s
S  . The mean 

bias is therefore computed as θ̄ − θ , while the standard 

deviation (STD) is given by 

√

∑

s(θ̂s−θ̄ )2

S−1  and the mean 

absolute deviation (MAD) is 
∑

s

∣

∣

∣θ̂s−θ

∣

∣

∣

S  . The mean absolute 
deviation (MAD) can be a better measure of the small 
sample performance of the estimators than the standard 
deviation (STD), especially because it is possible that 
some estimators have a considerable bias and the bias 
effect is not part of the standard deviation (STD).

All the Monte Carlo exercises were performed in a 
notebook with an Intel Core i7-9750H 2.60GHz, with 
24.0 GB of RAM, 6 physical cores and 12 logical pro-
cessors. The codes were implemented with a Stata 15.1 
MP-6 software license. All the codes are publicly avail-
able in the Mendeley Data repository: https://​data.​mende​
ley.​com/​datas​ets/​zsbxd​mhtj9/1.

3.2 � Calibrating the missing observations
The missing observations are specified in terms of the 
number of missing outcomes ( yi(s) ) in each simulation s. 

I create independent pseudo-uniform numbers zui(s) , and 
then for each simulation s specify as missing observations 
those with the m lowest values of zui(s) . For simplicity, all 
the other variables are observed (for instance, a variable X 
for family education or house type could be observed from 
administrative data), except for the endogenous variable 
yi(s) . I choose this option instead of a probability, because 
the Horowitz–Manski estimator would require a number 
of MD = VNz=0 possible datasets, with V being the pos-
sible values of yi(s) and Nz=0 being the number of miss-
ing observations. This implies that even a small number of 
observations such as 15 would reach MD = 215 = 32768 
possible datasets and a very large computational time. For 
this reason, I prefer to specify the number of missing val-
ues, rather than a probability of missing outcomes which 
would result in a random number of missing outcomes for 
each simulation. In the case of the logit model, I will show 
Monte Carlo exercises with 5 and 10 missing values.

4 � Monte Carlo exercises without missing data
This section starts by presenting the results of the Monte 
Carlo exercises without missing data. Table 1 summarizes 
the mean bias, standard deviation (STD) and mean abso-
lute deviation (MAD) of the estimated coefficients, exclud-
ing the J endogenous effect. I compare the logit model with 
only contextual group effects (that is, assuming J = 0 ) with 
the logit endogenous peer effects model with closed groups 
(as suggested in Brock and Durlauf (2002)), although with 
the individuals excluded from their own peer effect. The 
contextual effects only model can be seen as a more tra-
ditional model, since there is no endogenous control vari-
able and no correlation among individuals apart from the 
observable group effect Yg(i)(s) . The results show that the 
logit with only contextual effects converges quite quickly to 
the truth and the estimator presents accurate values even 
with just 5 members per group and 50 groups (therefore 
a total sample of 250 observations). However, the logit 
model with both endogenous and contextual effects also 
converges somewhat quickly toward the true values of the 
parameters. The same pattern appears with the logit model 
with non-closed groups, which is shown in Table 2.

Table 3 shows how important it is for estimation of the 
logit endogenous peer effects coefficient (J) excluding the 
individuals from their own peer group g(i) and whether it 
is helpful or not to include peers from outside the group 
(non-closed groups, which are essential for identification 
of the linear model). Models 1 and 2 show the case of 
closed groups, with individuals excluded and included 
from their own peer group, respectively. Models 3 and 4 
show the case of non-closed groups, with individuals 
excluded and included from their own peer group, 
respectively. The results show that it is very important to 

https://data.mendeley.com/datasets/zsbxdmhtj9/1
https://data.mendeley.com/datasets/zsbxdmhtj9/1
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exclude individuals from their own peer effect in order to 
estimate J, because models M2 and M4 present large val-
ues for the mean bias and mean absolute deviation 
(MAD), with such values falling slowly as the number of 
group members increases (the number of group member 
reduces the effect of the individual in its own group 1

ng
 , 

besides increasing the sample size) and with the number 
of groups (which increases the sample size). This shows it 
is not advisable in practice for empirical researchers to 
include individuals as part of their own peer group, even 
if the model is identified in theory. Both M1 and M3 pre-
sent accurate estimations in the sense that both models 
exclude individuals from their own peer group. However, 
M3 also includes peer effects from outside the group 










pi,g (s) =
ngwi(s)+

n
�

j=1,j∈g(i),j �=i

1(yj(s) = 1)

ng + ng − 1











 . 

The Monte Carlo exercise reveals that including peer 
effects outside of the group (model M3) can increase the 
mean bias, standard deviation (STD) and mean absolute 
deviation (MAD) for small sample sizes, such as just 50 
groups. However, the model with non-closed groups 
(M3) can present a lower bias for larger sample sizes, 
although with a larger standard deviation. It is only for 
large sample sizes (group size of 25 members and a num-
ber of groups of 500 or more, which implies a sample size 
equal or bigger than 12,500 observations) that the non-
closed groups model M3 represents a lower mean abso-
lute deviation relative to the closed group model M1. 
This makes sense, since the additional control variable 
(the outside peer effects wi(s) ) represents an additional 
source of identification, but it also increases the disper-
sion in individual and group outcomes.

Table 1  Bias, standard deviation and mean absolute deviation of the estimates of the logit discrete choice model with contextual 
group effects and the logit endogenous social interactions model with closed groups

Group size No. of groups

Bias: 
θ̄ − θ

(

θ̄ =
∑

s
θ̂s

S

)

 STD: 

√

∑

s
(θ̂s−θ̄ )2

S−1 MAD: 

∑

s

∣

∣

∣θ̂s−θ

∣

∣

∣

S

Average 
time 
(secs)

k b d k b d k b d

Logit with contextual group effects ( J = 0)

 5 50 −0.03 0.03 0.00 0.21 0.20 0.17 0.17 0.17 0.13 0.02

 5 100 −0.03 0.01 0.04 0.18 0.18 0.14 0.13 0.11 0.11 0.02

 5 200 −0.03 0.01 0.00 0.12 0.11 0.10 0.10 0.08 0.08 0.02

 5 500 0.00 0.00 0.01 0.07 0.07 0.05 0.06 0.05 0.04 0.04

 5 1000 0.00 0.01 0.00 0.05 0.04 0.05 0.04 0.03 0.04 0.07

 5 2500 0.00 0.00 0.00 0.03 0.03 0.03 0.03 0.02 0.02 0.13

Logit endogenous social interactions model (closed groups)

 5 50 0.09 0.04 0.02 0.29 0.18 0.22 0.24 0.15 0.17 0.03

 5 100 0.11 0.01 −0.03 0.24 0.17 0.12 0.20 0.14 0.10 0.03

 5 200 0.02 0.03 −0.01 0.16 0.12 0.10 0.12 0.10 0.08 0.04

 5 500 0.05 0.01 −0.01 0.10 0.06 0.06 0.09 0.05 0.05 0.07

 5 1000 0.03 0.00 −0.01 0.07 0.06 0.03 0.06 0.04 0.03 0.08

 5 2500 0.05 0.00 −0.03 0.04 0.03 0.02 0.05 0.03 0.03 0.14

 10 50 0.05 0.00 −0.02 0.25 0.12 0.15 0.21 0.10 0.11 0.03

 10 100 0.01 0.00 −0.02 0.19 0.09 0.10 0.15 0.07 0.08 0.03

 10 200 0.00 −0.01 −0.01 0.12 0.07 0.08 0.10 0.06 0.07 0.04

 10 500 0.00 −0.01 −0.03 0.09 0.05 0.04 0.07 0.04 0.05 0.07

 10 1000 −0.01 0.00 −0.03 0.06 0.03 0.03 0.05 0.02 0.03 0.12

 10 2500 −0.03 0.00 −0.02 0.04 0.02 0.02 0.04 0.02 0.02 0.25

 25 50 0.02 0.01 0.04 0.26 0.08 0.12 0.21 0.06 0.09 0.03

 25 100 −0.01 0.00 −0.03 0.18 0.07 0.08 0.14 0.05 0.06 0.05

 25 200 −0.07 0.00 −0.04 0.09 0.05 0.05 0.09 0.04 0.06 0.07

 25 500 −0.06 0.00 −0.03 0.07 0.04 0.04 0.08 0.03 0.04 0.14

 25 1000 −0.05 0.00 −0.03 0.05 0.02 0.03 0.06 0.02 0.03 0.26

 25 2500 −0.05 0.00 −0.03 0.03 0.01 0.01 0.06 0.01 0.03 0.59
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5 � Monte Carlo exercises with missing data
5.1 � Time performance of the interval estimators
This section summarizes the Monte Carlo results of the 
Horowitz–Manski and Manski–Tamer type of estima-
tors. Table 4 compares the average computational time of 
each estimator. Note that the 5 missing observations cor-
respond to a very small probability of missing outcomes, 
ranging from just 0.01% in the large sample cases to a 
maximum of 2% for the lowest samples. In the case of 7 
and 10 missing observations, the corresponding prob-
ability of missing outcomes ranges from 0.06% to 2.8% 
and 0.02% to 4%, respectively. These are very low prob-
abilities of missing data, since it is quite common to find 
survey datasets with more than 4% of missing data. For 
the case of just 5 missing observations, the Horowitz–
Manski for the logit model takes between 0.7 and 30.6 
seconds for the average across all simulations, while the 
Manski–Tamer type of estimator takes between 0.6 and 
19.6 seconds, which can be 50% faster in some cases. For 
10 missing observations, the time performance differ-
ence among the two estimators grows much larger, with 
the Horowitz–Manski type of estimator taking between 
23 and 966 seconds, while the Manski–Tamer estimator 

keeps about the same computational time as with just 5 
missing observations, with an average time between 0.5 
and 19.7 seconds. The conclusion is that the number of 
combinations required to compute the Horowitz–Man-
ski type of estimator increases exponentially with the 
number of observations ( MD = VNz=0 ), while for the 
Manski–Tamer the calculation remains similar even as 
the number of missing outcomes increases.

5.2 � Intervals of the interval estimators
Now, I summarize the mean intervals across all simula-
tions of the Horowitz–Manski and the Manski–Tamer 
around the true parameter values. Table  5 shows the 
mean intervals for the case of the logit model with 5 
missing values. For the case of the parameters k, b and 
d, the Horowitz–Manski type of interval estimator 
almost always contains the true parameter value in its 
average interval, although the intervals can be large in 
small samples such as 50 groups. However, for the case 
of the endogenous peer effects coefficient J, the Horow-
itz–Manski type of estimator often gives a biased inter-
val that does not contain the true parameter value, as 
shown for the simulations with group sizes of 10 and 25 

Table 2  Bias, standard deviation and mean absolute deviation of the estimates of the logit endogenous social interactions model 
with non-closed groups. 50 Monte Carlo simulations. Individuals are excluded from their own peer group

Group size No. of groups Bias: θ̄ − θ(θ̄ =
∑

s
θ̂s

S
) 

STD: 

√

∑

s
(θ̂s−θ̄ )2

S−1 MAD: 

∑

s

∣

∣

∣θ̂s−θ

∣

∣

∣

S

Average 
time 
(secs)

k b d k b d k b d

Logit endogenous social interactions model (non-closed groups)

 5 50 0.05 0.02 0.02 0.42 0.19 0.23 0.34 0.15 0.18 0.03

 5 100 0.01 0.01 −0.01 0.31 0.12 0.12 0.24 0.10 0.10 0.03

 5 200 0.05 0.02 0.02 0.21 0.12 0.12 0.19 0.10 0.10 0.04

 5 500 0.04 0.00 −0.01 0.11 0.06 0.06 0.09 0.05 0.04 0.07

 5 1000 0.02 0.01 0.00 0.09 0.04 0.05 0.08 0.03 0.04 0.08

 5 2500 0.02 0.00 0.00 0.06 0.03 0.02 0.05 0.02 0.02 0.14

 10 50 0.06 0.03 0.04 0.43 0.16 0.15 0.34 0.12 0.12 0.03

 10 100 0.00 0.04 0.02 0.24 0.11 0.11 0.20 0.09 0.09 0.03

 10 200 0.02 −0.01 0.01 0.19 0.07 0.07 0.15 0.06 0.06 0.04

 10 500 0.00 0.00 0.01 0.11 0.05 0.04 0.09 0.04 0.04 0.07

 10 1000 −0.01 0.00 0.00 0.07 0.03 0.03 0.06 0.03 0.03 0.12

 10 2500 −0.02 0.00 −0.01 0.05 0.02 0.02 0.04 0.02 0.02 0.25

 25 50 0.01 0.02 0.01 0.26 0.08 0.10 0.22 0.07 0.08 0.03

 25 100 0.01 0.01 0.00 0.18 0.07 0.06 0.13 0.06 0.05 0.05

 25 200 −0.03 0.00 0.00 0.16 0.04 0.05 0.13 0.03 0.04 0.07

 25 500 0.01 0.01 0.00 0.08 0.02 0.03 0.06 0.02 0.03 0.14

 25 1000 −0.04 0.00 −0.01 0.05 0.02 0.02 0.05 0.02 0.02 0.25

 25 2500 −0.02 0.00 0.00 0.03 0.01 0.01 0.03 0.01 0.01 0.62
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for samples with 500 groups or more. The Manski–Tamer 
always has a larger interval than the Horowitz–Manski, 
especially for small samples as 50 groups, but this differ-
ence becomes quite small for a number of groups of 100 
or more. The bounds of the Horowitz–Manski and the 
Manski–Tamer estimators tend to be reasonably small 
for samples with 1000 or 2500 groups, although with a 
significant bias for the J parameter.

It is problematic that in a few cases the bounds of the 
Horowitz–Manski and Manski–Tamer estimators do 
not include the true parameter value for the endogenous 
peer effect parameter J. This happens only for large peer 
groups (a group size of 10 or 25 members) and only for 
a large number of groups (500 groups or more). It is not 
easy to clarify why this inconsistency of the interval esti-
mators is happening, but the previous literature shows 
three factors that complicate the estimation of discrete 
choice models, particularly those with correlated obser-
vations. One factor is that all the nonlinear models 
(which includes the logit model) have a certain degree of 
bias in finite samples and this appears in the Monte Carlo 
exercises (Wooldridge, 2010). A second factor is that 
this small sample inconsistency of the discrete choice 
model is further exacerbated in settings with panel data 

(Heckman, 1981, Honoré & Tamer, 2006)1. A third fac-
tor is that the literature shows that misclassification of 
dependent variables in a discrete-response model causes 
inconsistent coefficient estimates (Hausman et al., 1998). 
This is a very close example to the setting of this paper, 
since the interval estimators work by trying several possi-
ble options for the missing outcomes and the endogenous 
group averages, which is in effect working with many 
samples that are misclassified and only a single sample 
that represents the true outcomes.

It also happens sometimes for the other parameters k, b 
and d that the lower bound θ̄min excludes the true param-
eter value, but the estimated interval is always very close 

Table 3  Bias, standard deviation and mean absolute deviation of the estimates for the endogenous effects coefficient (J) of the logit 
endogenous social interactions model

Model 1: Closed groups, with individuals excluded from their own peer group. Model 2: Closed groups, with individuals as part of their own peer group. Model 3: Non-
closed groups, with individuals excluded from their own peer group. Model 4: Non-closed groups, with individuals as part of their own peer group. 50 Monte Carlo 
simulations

Group size No. of groups Bias: θ̄ − θ(θ̄ =
∑

s
θ̂s

S
) 

STD: 

√

∑

s
(θ̂s−θ̄ )2

S−1 MAD: 

∑

s

∣

∣

∣θ̂s−θ

∣

∣

∣

S

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

5 50 −0.32 6.68 −0.63 10.19 1.29 0.75 2.19 1.90 0.91 6.68 1.80 10.19

5 100 −0.10 6.72 0.04 9.52 0.84 0.60 1.55 1.39 0.60 6.72 1.22 9.52

5 200 0.01 6.70 −0.20 9.62 0.54 0.41 1.16 0.85 0.41 6.70 0.95 9.62

5 500 0.09 6.72 0.01 9.62 0.40 0.19 0.55 0.46 0.29 6.72 0.42 9.62

5 1000 0.10 6.67 −0.01 9.62 0.21 0.17 0.42 0.39 0.18 6.67 0.34 9.62

5 2500 0.11 6.67 0.07 9.66 0.14 0.12 0.28 0.27 0.15 6.67 0.23 9.66

10 50 −0.15 6.47 −0.51 7.67 1.23 0.88 2.35 1.53 0.95 6.47 1.90 7.67

10 100 0.03 6.52 −0.13 8.11 0.92 0.57 1.19 1.14 0.75 6.52 0.99 8.11

10 200 0.16 6.31 −0.01 8.05 0.62 0.40 1.07 0.78 0.54 6.31 0.83 8.05

10 500 0.19 6.26 0.03 8.09 0.36 0.25 0.62 0.45 0.32 6.26 0.48 8.09

10 1000 0.23 6.30 0.14 8.18 0.26 0.15 0.37 0.29 0.29 6.30 0.31 8.18

10 2500 0.30 6.30 0.22 8.15 0.14 0.09 0.25 0.23 0.31 6.30 0.27 8.15

25 50 −0.17 6.20 −0.02 5.27 1.28 0.80 1.54 1.27 1.05 6.20 1.28 5.27

25 100 0.15 6.12 −0.12 5.19 0.83 0.53 0.93 1.00 0.67 6.12 0.74 5.19

25 200 0.44 6.18 0.17 5.19 0.50 0.35 0.83 0.56 0.53 6.18 0.69 5.19

25 500 0.33 6.08 0.02 5.29 0.35 0.18 0.41 0.36 0.41 6.08 0.33 5.29

25 1000 0.35 6.09 0.27 5.23 0.27 0.13 0.26 0.35 0.38 6.09 0.31 5.23

25 2500 0.36 6.09 0.14 5.26 0.18 0.08 0.19 0.19 0.37 6.09 0.18 5.26

1  While panel data are not the same as peer effects, both cases are examples 
in which the observations are correlated among themselves through heteroge-
neity and endogeneity (Heckman, 1981, Honoré & Tamer, 2006). The hetero-
geneity comes from the random effect for the panel data and the contextual 
effect for the social interactions model. The endogeneity issue in these models 
comes from the dynamic effect of previous choices in the case of panel data 
and the effect of the endogenous peer choices in the social interactions model. 
Honoré and Tamer (2006) show that the dynamic discrete choice models are 
hard to identify; therefore, this should explain why the peer effects model is 
also harder to estimate as the group size grows larger, and therefore the obser-
vations become more correlated among themselves.
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to the true value and only fails to contain the true value 
by a small amount of 0.01 or less. Therefore, the esti-
mated intervals of both the Horowitz–Manski and Man-
ski–Tamer estimators appear to be valid.

The pattern is similar with 10 missing observations, as 
summarized in Table  6. The estimated intervals of the 
Horowitz–Manski and Manski–Tamer approaches tend 
to contain the true parameter value for the parameters k, 
b and d, and the intervals—while large with small sam-
ples such as 50 groups—tend to fall quickly as the sam-
ple sizes grow. The Manski–Tamer approach provides 
very similar bounds, except for low sample sizes such as 
50 groups with a group size of 5 members. All the esti-
mated intervals are bigger than in the case of the 5 miss-
ing observations, as expected. For the J parameter of 
endogenous social interactions, the intervals can be quite 
big in small sample sizes with just 50 and 100 groups, 
even for groups with 25 members. It is also found that 
the estimated intervals do not contain the true J param-
eter for the cases of samples with 1000 and 2500 groups, 
although the width of the intervals falls with the sample 
size. In general, all the estimated intervals are larger with 
10 missing values (in Table  6) relative to just 5 missing 

values (Table 5) as expected, but with bigger differences 
for the small samples such as 50 and 100 groups.

6 � Conclusions and possible extensions
This paper examines partial inference of the peer effects 
models in the presence of missing outcome data, with a 
special focus on the binary choice case. Most peer effects 
models use the average outcome of each group as an 
explanatory variable; therefore, missing outcome data 
imply that we face both a problem of missing outcome 
values and an undetermined regressor. Having informa-
tion on the bounds of the outcome variable can, however, 
help us get partial identification bounds for the parame-
ters (Manski & Tamer, 2002, Horowitz & Manski, 2006). I 
use this information to obtain identification of a family of 
parametric binary choice models with peer effects (Brock 
& Durlauf, 2002; 2007, Blume et  al., 2010), although 
a similar approach can be suggested for the linear peer 
effects model for the case in which identification can be 
obtained through non-closed peer groups. Other exten-
sions of these results can easily be made by including a 
more general multinomial setting or semi-parametric 
discrete choice peer effect models (Blume et al., 2010).

Table 4  Time performance of the Horowitz–Manski (HM) and Manski–Tamer (MT) interval estimators (with non-closed groups and 
individuals excluded from their own peer group)

50 Monte Carlo simulations

Group size No. of groups 5 missing observations 10 missing observations 7 missing observations

Prob. of missing Average  time 
(secs)

Prob. of missing Average time 
(secs)

Prob. of missing Average 
time (secs)

(in %) Logit (in %) Logit (in %) OLS

HM MT HM MT HM MT

5 50 2.00 0.7 0.6 4.00 23 0.5 2.80 120 0.3

5 100 1.00 0.8 0.6 2.00 27 0.5 1.40 124 0.3

5 200 0.50 1.1 0.8 1.00 40 0.6 0.70 123 0.3

5 500 0.20 2.0 1.4 0.40 76 1.2 0.28 140 0.5

5 1000 0.10 3.7 2.4 0.20 114 2.3

5 2500 0.04 6.6 4.2 0.08 199 4.2

10 50 1.00 0.8 0.6 2.00 24 0.4 1.40 117 0.3

10 100 0.50 1.1 0.7 1.00 28 0.6 0.70 102 0.3

10 200 0.25 1.7 1.0 0.50 44 1.0 0.35 121 0.5

10 500 0.10 3.6 2.3 0.20 111 2.3 0.14 155 0.7

10 1000 0.05 6.1 3.8 0.10 195 3.8

10 2500 0.02 12.6 7.8 0.04 400 8.0

25 50 0.40 1.1 0.7 0.80 38 0.6 0.56 118 0.3

25 100 0.20 1.7 1.1 0.40 70 1.2 0.28 137 0.5

25 200 0.10 3.7 2.2 0.20 118 2.3 0.14 155 0.7

25 500 0.04 6.6 4.4 0.08 200 4.2 0.06 242 1.6

25 1000 0.02 12.5 8.3 0.04 389 7.8

25 2500 0.01 30.6 19.6 0.02 966 19.7
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For the case of bounded variables, sharp bounds 
can be obtained for all group variables and outcomes 
by plugging in all possible combination of values of 
the missing variables (Horowitz & Manski, 2006). This 
method, however, is computationally difficult to imple-
ment, since the number of potential combinations 
increases exponentially with the number of groups 
and therefore quickly becomes a heavy computational 
exercise even for datasets of moderate size. An attrac-
tive alternative, however, can be developed by notic-
ing this model has an interval (I), monotonicity (M) 
and mean independence (MI) properties, which can 
be summarized jointly as the IMMI assumption. Using 
these properties, a modified minimum distance (MMD) 
estimator is presented to obtain non-sharp bounds 
for the coefficients. While this approach is here sug-
gested as a solution to the binary peer effects case, the 
same estimator can be easily applied to any paramet-
ric model with missing outcomes and interval regres-
sors. In a set of Monte Carlo exercises, I show that the 
non-sharp bounds obtained through an interval estima-
tor similar to Manski and Tamer (2002) provide results 
quite similar to the sharp bounds of the Horowitz and 
Manski (2006) approach, but at a much smaller cost in 
terms of computational time. The computational time 
of the Horowitz and Manski (2006) approach increases 

exponentially with the number of missing observations 
and can quickly become overwhelming with just 15 
missing outcomes, but the non-sharp bounds proposed 
as an alternative with the IMMI assumption do not 
increase their computational time with additional miss-
ing outcomes and provide a good approximation for the 
sharp intervals (at least for the calibrated Monte Carlo 
exercises considered in this article). The Monte Carlo 
exercises also show that for the binary discrete choice 
model of peer effects there is not a significantly higher 
estimation accuracy for the case of non-closed groups 
relative to the closed groups case.

The bounds of the interval estimators of peer effects 
in the specified exercises are still large. This is a case 
for future econometricians and applied economists 
to combine further realistic assumptions in order to 
obtain tighter bounds (Manski, 2003).

Appendix 1: Proofs
Proof of Propositions 1 and 2
Let v be any interval-valued variable with v ∈ [v0, v1] 
(Assumption I). Let E[y | x, v] be weakly increasing in 
v (monotonicity—Assumption M). The law of iterated 
expectations and assumption mean independence (MI: 
E[y | x, v, v0, v1] = E[y | x, v] ) yield

Table 5  Minimum and maximum bounds around the true coefficients of the Horowitz–Manski and Manski–Tamer estimators of the 
logit endogenous social interactions model with non-closed groups and individuals excluded from their own peer group

50 Monte Carlo simulations, 5 missing values in each simulation

Group size No. of groups HM MT

θ̄min − θ θ̄max − θ θ̄min − θ θ̄max − θ

k b d J k b d J k b d J k b d J

5 50 −0.07 −0.16 −0.10 −0.98 0.32 0.01 0.06 0.96 −0.07 −0.16 −0.10 −1.79 0.43 0.07 0.08 0.96

5 100 0.02 −0.06 −0.07 −0.91 0.22 0.04 0.01 0.01 0.02 −0.09 −0.07 −0.91 0.22 0.04 0.02 0.01

5 200 0.04 −0.06 −0.02 −0.41 0.15 −0.01 0.02 0.08 −0.01 −0.06 −0.02 −0.41 0.15 0.03 0.03 0.15

5 500 0.00 0.00 −0.01 −0.06 0.04 0.02 0.00 0.12 0.00 −0.01 −0.01 −0.06 0.04 0.02 0.00 0.14

5 1000 0.01 0.00 0.00 0.01 0.03 0.01 0.00 0.11 0.01 0.00 −0.01 −0.03 0.04 0.01 0.00 0.11

5 2500 0.02 0.00 −0.01 −0.01 0.03 0.00 −0.01 0.03 0.02 0.00 −0.01 −0.01 0.03 0.00 0.00 0.07

10 50 −0.14 −0.03 −0.01 −0.80 0.12 0.07 0.08 0.54 −0.14 −0.05 −0.01 −0.91 0.22 0.07 0.08 0.54

10 100 −0.05 −0.01 −0.03 −0.18 0.08 0.05 0.01 0.47 −0.05 −0.01 −0.03 −0.18 0.08 0.05 0.01 0.47

10 200 −0.02 0.00 −0.01 −0.16 0.04 0.02 0.01 0.15 −0.02 −0.02 −0.01 −0.16 0.05 0.02 0.01 0.15

10 500 −0.04 0.00 −0.01 0.17 −0.01 0.01 0.00 0.29 −0.04 −0.01 −0.02 0.12 0.01 0.01 0.00 0.29

10 1000 0.00 −0.01 −0.01 0.07 0.01 0.00 0.00 0.13 −0.01 −0.01 −0.01 0.07 0.01 0.01 0.00 0.17

10 2500 −0.01 0.00 −0.01 0.14 0.00 0.00 0.00 0.16 −0.01 −0.01 −0.01 0.14 0.00 0.00 0.00 0.17

25 50 −0.04 −0.04 −0.04 −0.25 0.07 0.00 0.00 0.36 −0.04 −0.04 −0.04 −0.72 0.15 0.02 0.02 0.36

25 100 0.01 −0.01 0.00 −0.29 0.06 0.01 0.01 −0.01 0.01 −0.01 −0.01 −0.29 0.06 0.01 0.01 −0.01

25 200 0.00 0.00 −0.02 −0.07 0.03 0.01 −0.01 0.07 0.00 0.00 −0.02 −0.07 0.03 0.01 0.01 0.07

25 500 −0.01 −0.01 0.00 0.06 0.00 0.00 0.00 0.12 −0.03 −0.01 0.00 0.06 0.00 0.00 0.00 0.23

25 1000 −0.03 0.00 0.00 0.20 −0.03 0.00 0.00 0.23 −0.03 0.00 −0.02 0.19 −0.02 0.00 0.00 0.23

25 2500 −0.01 0.00 −0.01 0.10 −0.01 0.00 0.00 0.11 −0.01 0.00 −0.01 0.10 −0.01 0.00 0.00 0.11
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where the first equality is given by the law of iterated 
expectations and the second one by Assumption MI.

Assumptions I and M imply that for all constants 
V0 ≤ V1,

and assumption that y ∈ [yL, yU ] and the law of total 
probability give when there are missing outcome data,

(A1)

E[y | x, v0, v1] =

∫

E[y | x, v, v0, v1]∂P(v | x, v0, v1]

=

∫

E[y | x, v]∂P(v | x, v0, v1]

(A2)

E[y | x, v = V0] ≤
∫

E[y | x, v]∂P(v | x, v0

= V0, v1 = V1] ≤ E[y | x, v = V1]

where

Hence,

To prove the lower bound on E[y | x, v = V ] , take any 
V1 ≤ V  . It follows from A3 and from Assumption M that

(A.3.1)EL[y | x, v = V0] ≤ E[y | x, v = V0]

(A.3.2)E[y | x, v = V1] ≤ EU [y | x, v = V1]

(A.3.3)

EL[y | x, v0 = V0, v1 = V1] ≤ E[y | x, v0
= V0, v1 = V1] ≤ EL[y | x, v0
= V0, v1 = V1]

EL[y | x, v = V0] = E[y | x, v = V0, z = 1]P(z = 1 | x, v = V0)+ yLP(z = 0 | x, v = V0)

EU [y | x, v = V1] = E[y | x, v = V1, z = 1]P(z = 1 | x, v = V1)+ yUP(z = 0 | x, v = V1)

EL[y | x, v0= V 0, v1= V 1] = E[y | x, v0= V 0, v1= V 1, z = 1]P(z = 1 | x, v0= V 0, v1= V 1)+
+yLP(z = 0 | x, v0= V 0, v1= V 1)

EU [y | x, v0= V 0, v1= V 1] = E[y | x, v0= V 0, v1= V 1, z = 1]P(z = 1 | x, v0= V 0, v1= V 1)+
+yUP(z = 0 | x, v0= V 0, v1= V 1)

(A4)
EL[y | x, v = V0] ≤ E[y | x, v0 = V0, v1 = V1]
≤ EU [y | x, v = V1].

Table 6  Minimum and maximum bounds around the true coefficients of the Horowitz–Manski and Manski–Tamer estimators of the 
logit endogenous social interactions model with non-closed groups and individuals excluded from their own peer group

50 Monte Carlo simulations, 10 missing values in each simulation

Group size No. of groups HM MT

θ̄min − θ θ̄max − θ   θ̄min − θ θ̄max − θ

k b d J k b d J k b d J k b d J

5 50 −0.12 −0.29 −0.16 −2.51 0.63 0.09 0.17 1.03 −0.22 −0.29 −0.16 −2.51 0.63 0.09 0.17 1.20

5 100 −0.12 −0.13 −0.11 −0.94 0.29 0.05 0.03 0.93 −0.12 −0.13 −0.11 −0.94 0.29 0.05 0.03 0.93

5 200 −0.03 −0.05 −0.05 −0.60 0.16 0.04 0.03 0.34 −0.03 −0.05 −0.05 −0.60 0.16 0.04 0.03 0.34

5 500 0.00 −0.02 −0.03 −0.25 0.08 0.01 0.00 0.12 0.00 −0.02 −0.03 −0.25 0.08 0.01 0.00 0.21

5 1000 −0.01 −0.01 −0.01 0.00 0.03 0.01 0.01 0.19 −0.01 −0.01 −0.01 0.00 0.03 0.01 0.01 0.19

5 2500 0.02 0.00 −0.01 0.00 0.03 0.01 0.00 0.07 0.02 −0.01 −0.01 0.00 0.03 0.01 0.00 0.08

10 50 −0.03 −0.14 −0.08 −1.83 0.44 0.04 0.09 0.55 −0.03 −0.14 −0.08 −1.83 0.44 0.05 0.09 0.55

10 100 −0.05 −0.09 −0.05 −0.58 0.18 0.01 0.03 0.58 −0.05 −0.09 −0.05 −0.58 0.19 0.01 0.03 0.58

10 200 −0.05 −0.03 −0.04 −0.13 0.06 0.01 0.00 0.46 −0.05 −0.04 −0.04 −0.13 0.06 0.01 0.01 0.46

10 500 0.00 −0.02 −0.02 −0.07 0.05 0.00 0.00 0.17 −0.01 −0.02 −0.02 −0.07 0.05 0.00 0.00 0.19

10 1000 −0.02 −0.01 −0.01 0.10 0.00 0.00 −0.01 0.22 −0.02 −0.01 −0.01 0.10 0.00 0.00 −0.01 0.22

10 2500 −0.02 −0.01 −0.01 0.18 −0.01 0.00 −0.01 0.23 −0.03 −0.01 −0.01 0.18 −0.01 0.00 −0.01 0.23

25 50 −0.05 −0.08 −0.04 −0.78 0.17 0.00 0.03 0.40 −0.05 −0.08 −0.04 −0.78 0.17 0.01 0.03 0.40

25 100 −0.03 −0.03 −0.03 −0.25 0.07 0.01 0.00 0.30 −0.03 −0.03 −0.03 −0.25 0.07 0.01 0.01 0.30

25 200 −0.04 −0.02 −0.01 −0.05 0.02 0.00 0.01 0.24 −0.04 −0.02 −0.01 −0.09 0.03 0.01 0.01 0.24

25 500 −0.02 0.00 −0.01 0.04 0.00 0.00 0.00 0.15 −0.02 −0.02 −0.01 −0.05 0.02 0.00 0.00 0.15

25 1000 −0.03 0.00 −0.01 0.15 −0.02 0.00 −0.01 0.21 −0.03 0.00 −0.01 0.15 −0.02 0.00 0.00 0.21

25 2500 −0.02 0.00 −0.01 0.16 −0.02 0.00 0.00 0.18 −0.02 0.00 −0.01 0.13 −0.02 0.00 0.00 0.18
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Hence, the lower bound holds. To prove sharpness, view 
the bound as a function of V. This function is weakly 
increasing in V, so Assumption M holds. The proof of the 
sharp upper bound uses analogous reasoning. Therefore, 
we have proved that under Assumption IMMI, we have:

In the absence of other information, these bounds are 
sharp. Propositions 1 and 2 are just special cases of this 
result.

Proof for Proposition 3
Assumption IMMI gives us

For a parametric model, this inequality becomes

For the case of missing outcome data, E[y | x, v0, v1] 
is not perfectly observed, but A.3.3 gives us 
EL[y | x, v0, v1] ≤ E[y | x, v0, v1] ≤ EU [y | x, v0, v1] . 
A6 and A3 give us f (x, v0, γ ) ≤ EU [y | x, v0, v1] and 
f (x, v1, γ ) ≥ EL[y | x, v0, v1] . Therefore, for a parametric 
model, inequalities A6 and A3 become:

It follows that c is equivalent to γ if and 
only if f (x, v0, c) ≤ EU [y | x, v0, v1] 

⋃

 
f (x, v1, c) ≥ EL[y | x, v0, v1] , a.e. (x, v0, v1) . �

Proof for Lemma 1
This corollary allows us to characterize the identifica-
tion region for the case of the monotone index form 
f (x, v, γ ) = F(xβ + δv) in the case of missing outcome 
data. The identification region of γ in our Proposi-
tion 3 is given by C∗ ≡ {c ∈ C : P(V (c)) = 0} , where 
V (c) ≡ [ (x, v0, v1) : f (x, v0, c) ≤ EU [y | x, v0, v1] 

⋃

 
f (x, v1, c) ≥ EL[y | x, v0, v1] ] , as proved previously.

Let f have the monotone-index form. Then: 

(a)	 C∗ is non-empty and convex.

EL[y | x, v0 = V0, v1 = V1] ≤ E[y | x, v0
= V0, v1 = V1] ≤ E[y | x, v = V ] ⇒ EL[y | x, v0
= V0, v1 = V1] ≤ E[y | x, v = V ].

sup
v1≤V

EL[y | x, v0 = V0, v1 = V1] ≤ E[y | x, v = V ] ≤ inf
vo≥V

EU [y | x, v0 = V0, v1 = V1].

(A5)
E[y | x, v = V0] ≤ E[y | x, v0 = V0, v1 = V1]
≤ E[y | x, v = V1].

(A6)f (x, v0, γ ) ≤ E[y | x, v0, v1] ≤ f (x, v1, γ ).

(A7)
f (x, v0, γ ) ≤ EU [y | x, v0, v1]

⋃

f (x, v1, γ ) ≥ EL[y | x, v0, v1].

(b)	 Assume that there exists no proper linear sub-
space of Rk+1 having probability one under 
P(x,  v). Assume that P(v0 = v1) > 0 and 
P(z = 1 | v0 = v1) = 1 . Then, C∗ = γ .

Proof  (a) The set C∗ is non-empty because γ ∈ C∗ . To 
prove convexity, observe that the condition P(V (c)) = 0 , 

identifying c = (b, d) as a member of C∗ , holds if and only 
if

where sU (x, v0, v1) ≡ F−1(EU [y | x, v0, v1]) and 
sL(x, v0, v1) ≡ F−1(EL[y | x, v0, v1]) . Let c′ and c′′ be dis-
tinct elements of C∗ . Then,

Now consider cα ≡ αc′ + (1− α)c′′ , where α ∈ (0, 1) . It 
follows from the above that

Hence, cα ∈ C∗ .

(b) Consider the subpopulation with (v0 = v1) . By 
assumption P(v0 = v1) > 0 and P(z = 1 | v0 = v1) = 1 . 
Hence, c ∈ C∗ must satisfy the inequality 
F(xb+ dv) = EU [y | x, v0, v1] = EL[y | x, v0, v1] = E[y | x, v0, v1] or 
equivalently xb+ dv = F−1(E[y | x, v0, v1]) = s(x, v0, v1) , 
a.e. (v0 = v1) . The support condition on P(x, v) implies 
that (β , δ) is the only parameter value that satisfies the 
equality almost everywhere (v0 = v1) . Hence, γ is identi-
fied.�  �

Result (b) is equivalent to saying that we are able to point-
identify the parameters of the social interactions models 
if there is at least one group with no missing data. This is 
obviously a very strong to use in practice. Even if there is 
one or more groups with no missing data, we would need 
the sample size represented by these groups with no miss-
ing data to increase to infinity in order to avoid sampling 
imprecision in the estimation of the parameters.

Proof for Proposition 4
Let the estimator for the identification region be given by

P(F(x, v0, c) ≤ EU [y | x, v0, v1]
⋃

F(x, v1, c) ≥ EL[y | x, v0, v1] ) =
= P(xb+ dv0 ≤ sU (x, v0, v1)

⋃

xb+ dv1 ≥ sL(x, v0, v1)) = 1

P(xb′ + d′v0 ≤ sU (x, v0, v1)
⋃

xb′ + d′v1 ≥ sL(x, v0, v1)) =
= P(xb′′ + d′′v0 ≤ sU (x, v0, v1)

⋃

xb′′ + d′′v1 ≥ sL(x, v0, v1)) = 1.

P(xbα + dαv0 ≤ sU (x, v0, v1)
⋃

xbα + dαv1 ≥ sL(x, v0, v1)) = 1.
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where

with EN
L [y | xi, v0i, v1i] and EN

U [y | xi, v0i, v1i] being con-
sistent estimates of EL[y | xi, v0i, v1i] and EU [y | xi, v0i, v1i] 
.

Proof  Manski and Tamer (2002) provide a proof that 
HN (γ ) is a consistent estimator for the identifica-
tion region H(γ ) , which remains valid in this case with 
EN
U [y | xi, v0i, v1i] and EN

L [y | xi, v0i, v1i] in the place of 
ηN (xi, v0i, v1i) = EN [y | xi, v0i, v1i] , and therefore the 
proof is omitted here.

Appendix 2: Monte Carlo simulations for the linear 
model
Interval estimators for the linear case
For the linear social interactions case, I will assume an 
identified model in which the peer group is non-closed:

with all the regressors ( Xi , Yg(i) , ȳi,g + wi ) and the unob-
served error term ǫi being bounded. ȳi,g represents the 
average outcomes among the peer group in the sam-
ple, while wi represents the average outcomes of other 
peers of individual i but which are not peers of the other 
members of group g(i). I assume that both ȳi,g and wi 
are observed (for instance, the individuals could self-
report the average outcomes of their other peers which 
are not common peers in the group g(i)). Since all the 
terms Wi ≡ (ȳi,g + wi,Xi,Yg(i), ǫi) are bounded, that is 
Wi ∈ [vL, vU ] with vL, vU being multivariate vectors of size 

HN (γ ) = arg min
c∈C

1

N

N
∑

i=1

gN1(c, xi, v0i, v1i) wN1(c, xi, v0i, v1i)

+ gN0(c, xi, v0i, v1i) wN0(c, xi, v0i, v1i)

gN0(c, xi, v0i, v1i) = 1[f (xi, v0i, c) > EN
U [y | xi, v0i, v1i]],

gN1(c, xi, v0i, v1i) = 1[f (xi, v1i, c) < EN
L [y | xi, v0i, v1i]],

wN0(c, xi, v0i, v1i) = [f (xi, v0i, c)− EN
U [y | xi, v0i, v1i]]2and

wN1(c, xi, v0i, v1i) = [f (xi, v1i, c)− EN
L [y | xi, v0i, v1i]]2,

(B.1)yi = k + bXi + dYg(i) + J (ȳi,g + wi)+ ǫi,

2+ K + Q , the outcomes are bounded in an interval as 
well: y ∈ [yL, yU ].

Again assume y is observed when z = 1 and not 
observed when z = 0 . For simplicity, I assume that 
Xi , Yg(i) and the outside peer effect of the individ-
ual wi are always observed, but the missing infor-
mation on some outcomes yi implies that ȳi,g is not 
point-identified. Again, I denote V g

x = (E(y | g),w,Yg , x) , 
W

g
x = (EL(y | g),EU (y | g),w,Yg , x)   , 

W
g
0 = (EL(y | g),w,Yg , x) , and Wg

1 = (EU (y | g),w,Yg , x) . 
This is similar to the previous definition, which used 
pg(i), p

L
g(i), p

U
g(i) instead of E(y | g),EL(y | g),EU (y | g) . 

I also assume the standard location assumption, 
E[ǫi | (ȳi,g + wi),Yg , x] = 0.

This linear social interactions model complies with 
the IMMI assumptions, just like the previously exposed 
discrete choice model. In particular, the linear social 
interactions model satisfies: i) the interval assump-
tion (I), because y ∈ [yL, yU ] and ȳi,g ∈ [yL, yU ] ; ii) the 
weak monotonicity assumption (M), since E[y | Wg ′

x′ ] 
is weakly increasing in ȳi,g due to J being a constant; 
iii) the mean independence assumption (MI), since 
E[y | E(y | g),W

g
x ] = E[y | V

g
x ] = k + bXi + dYg(i) + J (ȳi,g + wi).

Assumption I) and the law of total probability 
give us Proposition 2.B: EL[y | Wg

x ] ≤ E[y | Wg
x ] ≤ 

EU [y | Wg
x ] , where EL[y | Wg

x ] = E[y | Wg
x , z = 1] 

P(z = 1 | Wg
x )+ yLP(z = 0 | Wg

x ) 
and EU [y | Wg

x ] = E[y | Wg
x , z = 1] 

P(z = 1 | Wg
x )+ yUP(z = 0 | Wg

x ) . This is similar to 
Proposition 2, which applied yL = 0 and yU = 1.

Then, by assumptions IMMI we get Proposition 4.B: Let 
G(Wi) = k + bXi + dYg(i) + J (ȳi,g + wi) . A suggested 
estimator for the identification region H(θ) would be

where EN
L [y | Wg

x,i] and EN
U [y | Wg

x,i] are consistent esti-
mators of EL[y | Wg

x,i] and EU [y | Wg
x,i] , respectively.

Monte Carlo exercises
The linear peer effects model is simulated as follows. For 
each simulation s, the model is given by 
yi = k + bXi + dYg(i) + J (ȳi,g + wi)+ ǫi . Again, the sim-
ulations consider that the coefficients 

{

k , b, d, J
}

 are con-
stants for all simulations and that all the groups are the 
same, that is, ng(i) = ng . Each simulated observation is 
obtained with the specified set of coefficients: k = 1.5 , 
b = 0.5 , d = 0.3 , J = 0.2 . The variables Xi(s) , Yg(i)(s) , 
wi(s) and εi(s) are simulated as independent 

HN (θ) = arg min
c∈C

1

N

N
∑

i=1

1[G(W
g
1,i) < EN

L [y | Wg
x,i]] [G(W

g
1,i)− EN

L [y | Wg
x,i]]2

+ 1[G(W
g
0,i) > EN

U [y | Wg
x,i]] [G(W

g
0,i)− EN

U [y | Wg
x,i]]2
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pseudo-standard normal numbers, with respective sup-
ports between [0, 4] , [0, 1] , [1.25, 4.125] and [−0.5, 0.5] . The 
reason why wi(s) is expressed between 1.25 and 4.125 is 
to match the same support as the value of 

n
∑

j=1,j∈g(i)
1(yj(s) = 1)/ng . For the variable pi,g (s) , I imple-

ment two alternatives: 

	(i)	 non-closed groups with individual i as part of his 
own peer group and with the outside peer group of 
the same size as the group g, 

pi,g (s) =
ngwi(s)+

n
∑

j=1,j∈g(i)
1(yj(s) = 1)

ng + ng
;

	(ii)	 non-closed groups with individual i excluded from 
their own peer group and with the outside peer 
group of the same size as the group g, 

pi,g (s) =
ngwi(s)+

n
∑

j=1,j∈g(i),j �=i

1(yj(s) = 1)

ng + ng − 1
.

The reason why the OLS peer effects models do not con-
sider closed groups is due to the well-known identifica-
tion problem of including endogenous effects in linear 
models with closed groups (Manski 1993, Bramoullé 
et al., 2009), and therefore the peer effects wi(s) that are 
specific to each individual i are required for the identifi-
cation. For the OLS model, I will consider the cases of 5 
and 7 missing values, with the number of possible V out-
comes being taken from a grid of 5 values: 1.25, 2.0, 2.7, 
3.4 and 4.125. Specifying V = 5 in the linear case is an 
approximation, since in fact the outcome y is continuous 
and would require an infinite number of possible values 
for each outcome. Therefore, the linear case presents a 
lower bound for the computational demands of applying 
the Horowitz–Manski estimator.

Table  7 shows the performance of the linear endog-
enous peer effects model with non-closed groups (which 
is required for the identification). For simplicity, I only 
present the results with individuals excluded from their 

Table 7  Bias, standard deviation and mean absolute deviation of the estimates for the linear (OLS) model with non-closed groups

50 Monte Carlo simulations. Individuals excluded from their own peer group

Group size No. of groups Bias: θ̄ − θ(θ̄ =
∑

s
θ̂s

S
) 

STD: 

√

∑

s
(θ̂s−θ̄ )2

S−1 MAD: 

∑

s

∣

∣

∣θ̂s−θ

∣

∣

∣

S

Average 
time 
(secs)

k b d J k b d J k b d J

OLS (non-closed groups)

 5 50 −0.01 0.00 0.00 0.00 0.12 0.01 0.08 0.04 0.09 0.01 0.06 0.03 0.02

 5 100 −0.01 0.00 −0.01 0.00 0.08 0.01 0.05 0.03 0.07 0.01 0.04 0.02 0.01

 5 200 −0.01 0.00 −0.01 0.01 0.06 0.01 0.03 0.02 0.05 0.01 0.02 0.02 0.01

 5 500 −0.01 0.00 0.00 0.00 0.04 0.00 0.02 0.01 0.03 0.00 0.02 0.01 0.02

 10 50 0.00 0.00 0.00 0.00 0.09 0.01 0.05 0.03 0.07 0.01 0.04 0.02 0.01

 10 100 0.00 0.00 0.00 0.00 0.07 0.01 0.03 0.02 0.06 0.01 0.02 0.02 0.01

 10 200 −0.01 0.00 0.00 0.00 0.04 0.01 0.02 0.01 0.03 0.00 0.02 0.01 0.01

 10 500 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.01 0.02 0.00 0.01 0.01 0.02

 25 50 0.01 0.00 0.00 0.00 0.06 0.01 0.03 0.02 0.05 0.01 0.03 0.02 0.01

 25 100 −0.01 0.00 0.00 0.00 0.04 0.01 0.02 0.01 0.03 0.01 0.02 0.01 0.01

 25 200 −0.01 0.00 0.00 0.00 0.03 0.00 0.02 0.01 0.02 0.00 0.01 0.01 0.02

25 500 −0.01 0.00 0.00 0.00 0.02 0.00 0.01 0.01 0.02 0.00 0.01 0.00 0.03

Table 8  Time performance of the Horowitz–Manski (HM) and 
Manski–Tamer (MT) interval estimators for the linear peer effects 
models (with non-closed groups and individuals excluded from 
their own peer group). 50 Monte Carlo simulations

Group size No. of groups 5 missing observations

Prob. of missing Average 
time (secs)

(in %) OLS

HM MT

5 50 2.00 6.8 0.3

5 100 1.00 6.9 0.4

5 200 0.50 6.9 0.4

5 500 0.20 8.2 0.6

10 50 1.00 6.7 0.4

10 100 0.50 6.5 0.4

10 200 0.25 7.0 0.6

10 500 0.10 9.1 0.8

25 50 0.40 6.4 0.4

25 100 0.20 6.9 0.5

25 200 0.10 8.2 0.8

25 500 0.04 12.6 1.7
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own peer effects, since otherwise there could be a signifi-
cant bias in the estimation due to the correlation between 
yi(s) and the unobserved idiosyncratic error εi(s) . The 
results show that there is a very rapid convergence of 
the OLS estimates for all the coefficients even for sample 
sizes as small as 50 groups and a small group size of just 
5 members. Therefore, in the case of non-closed groups, 
the convergence of the OLS estimator is much faster than 
for the logit model (model M3). Table  8 shows that for 
the linear model, the Horowitz–Manski type of estima-
tor has an average performance time between 6.4 and 
12.6 seconds for 5 missing observations, but this grows to 
an average time between 102 and 242 seconds with just 7 
missing observations. However, the Manski–Tamer type 
of estimator keeps a similar time performance whether 
with 5 or 7 missing observations, with an average time 
between 0.3 and 1.7 seconds.

Finally, Table 9 shows the performance of the Horow-
itz–Manski and Manski–Tamer estimators for the linear 
peer effects model. In this case, both interval estimator 
approaches coincide perfectly, although perhaps this 
would not be the case with other calibrations or with a 
higher number of missing outcomes. It is possible that 
with a larger number of missing values, the interval esti-
mates of the Manski–Tamer approach would be much 
worse than the sharp bounds of the Horowitz–Man-
ski approach, although the Horowitz–Manski approach 
would certainly increase enormously its computational 
time due to the large number of possible missing datasets 
given by MD = VNz=0 . In general, the interval estimates 
contain the true parameter value for all the coefficients, 
including the endogenous peer coefficient J. The inter-
vals are somewhat wider when the missing observations 
increase from 5 to 7, as expected. But the estimated inter-
vals of the linear model fall substantially and become 

Table 9  Minimum and maximum bounds around the true coefficients of the Horowitz–Manski and Manski–Tamer estimators of the 
OLS endogenous social interactions model with non-closed groups and individuals excluded from their own peer group. 50 Monte 
Carlo simulations, 5 missing values in each simulation

Group size No. of groups HM MT

θ̄min − θ θ̄max − θ θ̄min − θ θ̄max − θ

k b d J k b d J k b d J k b d J

5 missing values

 5 50 −0.13 −0.03 −0.09 −0.05 0.17 0.01 0.07 0.05 −0.13 −0.03 −0.09 −0.05 0.17 0.01 0.07 0.05

 5 100 −0.09 −0.02 −0.06 −0.02 0.07 0.01 0.02 0.03 −0.09 −0.02 −0.06 −0.02 0.07 0.01 0.02 0.03

 5 200 −0.05 −0.01 −0.03 −0.01 0.03 0.00 0.00 0.02 −0.05 −0.01 −0.03 −0.01 0.03 0.00 0.01 0.02

 5 500 −0.02 −0.01 −0.01 0.00 0.01 0.00 0.01 0.01 −0.02 −0.01 −0.01 0.00 0.01 0.00 0.01 0.01

 10 50 −0.05 −0.02 −0.04 −0.03 0.12 0.00 0.03 0.03 −0.05 −0.02 −0.04 −0.03 0.12 0.00 0.03 0.03

 10 100 −0.03 0.00 −0.02 −0.02 0.06 0.01 0.01 0.01 −0.03 0.00 −0.02 −0.02 0.06 0.01 0.02 0.01

 10 200 −0.02 0.00 −0.01 −0.01 0.01 0.00 0.01 0.01 −0.02 0.00 −0.01 −0.01 0.01 0.00 0.01 0.01

 10 500 −0.01 0.00 0.00 −0.01 0.01 0.00 0.01 0.00 −0.01 0.00 0.00 −0.01 0.01 0.00 0.01 0.00

 25 50 −0.06 0.00 −0.01 0.00 0.00 0.01 0.02 0.02 −0.06 −0.01 −0.01 −0.01 0.02 0.01 0.02 0.02

 25 100 −0.01 −0.01 0.00 −0.01 0.03 0.00 0.02 0.00 −0.01 −0.01 −0.01 −0.01 0.03 0.00 0.02 0.00

 25 200 −0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 −0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00

 25 500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 missing values

 5 50 −0.15 −0.04 −0.16 −0.09 0.30 0.02 0.08 0.06 −0.15 −0.04 −0.16 −0.09 0.30 0.02 0.08 0.06

 5 100 −0.10 −0.02 −0.06 −0.04 0.13 0.01 0.05 0.03 −0.10 −0.02 −0.06 −0.04 0.13 0.01 0.05 0.03

 5 200 −0.07 −0.01 −0.03 −0.01 0.03 0.00 0.02 0.02 −0.07 −0.01 −0.03 −0.01 0.03 0.00 0.02 0.02

 5 500 −0.02 −0.01 −0.02 0.00 0.03 0.00 0.00 0.01 −0.02 −0.01 −0.02 0.00 0.03 0.00 0.01 0.01

 10 50 −0.11 −0.02 −0.05 −0.03 0.11 0.01 0.06 0.04 −0.11 −0.02 −0.05 −0.03 0.11 0.01 0.06 0.04

 10 100 −0.08 −0.01 0.00 −0.02 0.04 0.00 0.05 0.02 −0.08 −0.01 −0.01 −0.02 0.04 0.00 0.05 0.02

 10 200 −0.02 −0.01 −0.01 −0.01 0.03 0.00 0.02 0.01 −0.02 −0.01 −0.01 −0.01 0.03 0.00 0.02 0.01

 10 500 −0.01 0.00 −0.01 0.00 0.01 0.00 0.00 0.00 −0.01 0.00 −0.01 0.00 0.01 0.00 0.00 0.00

 25 50 −0.03 −0.01 −0.04 −0.02 0.07 0.00 0.01 0.01 −0.03 −0.01 −0.04 −0.02 0.07 0.00 0.01 0.01

 25 100 0.00 0.00 −0.02 −0.01 0.05 0.00 0.01 0.00 0.00 0.00 −0.02 −0.01 0.05 0.00 0.01 0.00

 25 200 −0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 −0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00

 25 500 −0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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negligible for sample sizes of 200 groups or more. There-
fore, the convergence of the intervals is much faster for 
the linear peer effects than in the discrete choice case. 
The Monte Carlo exercises show that, even in the case 
without any missing data, there are significant accuracy 
problems for estimating linear peer effects models that 
include the individuals as part of their own peer group, 
since this creates a problem of an endogenous regressor 
being correlated with the unobservable error term.

Abbreviations
I: Interval; IMMI: Interval, monotonicity, and mean independence; M: Monoto-
nicity; MI: Mean independence; MLE: Maximum likelihood estimator.
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