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Abstract 

Technologies evolve at different paces and their rate of improvement varies considerably. We demonstrate that the 
fastest technological progress currently occurs in the digital domain and empirically investigate the relationship 
between technologies’ improvement rates and breakthrough innovations as measured by forward citations of pat-
ents. Our empirical estimates suggest that patents from the digital sphere, as well as those related to fast-improving 
technologies, are associated with a higher probability to produce breakthrough innovations. We then investigate 
Swiss core industries’ specialization patterns toward these potential high-impact technologies and compare the state 
of cutting-edge innovation in Switzerland to other countries. Our findings imply that the Swiss innovation system is 
among the laggards regarding innovations in today’s fastest improving digital technologies.
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1  Introduction
Today’s rapid technological progress primarily concerns 
digital technologies, be it artificial intelligence (AI), cloud 
computing or customer relationship management. But it 
is by no means restricted to the computer and software 
industry. Rather, digital innovations are also widespread 
in the manufacturing sector, which primarily reflects 
that digital technologies can have general-purpose 

characteristics.1 Such technologies are a crucial ingredi-
ent of economic growth (e.g., Helpman, 1998; Bresnahan 
& Trajtenberg, 1995), and their early adoption can yield 
long-lasting advantages for first-movers in their respec-
tive fields (e.g., Brynjolfsson et  al., 2021; Tambe et  al., 
2020; Triulzi et  al., 2020). Unsurprisingly, software-
related patenting has surged dramatically over the last 
decades, whereas the bulk of the increase was heavily 
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1  See, for example, Bresnahan (2010) or Jovanovic and Rousseau (2005) for 
an overview of general-purpose technologies. With regard to digital tech-
nologies, Basu and Fernald (2007) discuss GPT characteristics of information 
and communication technologies (ICT) and Goldfarb et al. (2023) of artificial 
intelligence. Bessen and Hunt (2007) discuss the spread of digital technolo-
gies to the manufacturing sector. More specifically for manufacturing, Rajara-
jan et al. (2021), Porter and Heppelmann (2015), and Porter and Heppelmann 
(2014) investigate challenges of smart connected products and the Internet of 
things.

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41937-023-00104-z&domain=pdf


Page 2 of 31Niggli and Rutzer ﻿Swiss Journal of Economics and Statistics           (2023) 159:1 

concentrated in a few tech-clusters (Chattergoon & Kerr, 
2022).2 With this respect, Bloom et  al. (2021) find that 
clusters which were pioneers in inventing disruptive 
technologies over the last decades have higher wages and 
more high-skilled jobs many years after the technology 
first emerged, suggesting that early involvement in novel 
disruptive technologies may have long-lasting economic 
benefits.

Which set of technologies are potentially disruptive 
today and in the near future? And how are different coun-
tries—particularly Switzerland—positioned with respect 
to innovations in these technologies? These are the ques-
tions to which our paper contributes. Naturally, tech-
nologies from the digital domain are primary candidates 
to focus on, since digitization is transforming all aspects 
of economic activity (e.g., Brynjolfsson & McAfee, 2014). 
However, many other technologies also evolve at high 
speed and might become disruptive as well (e.g., battery 
technology). Furthermore, since some digital technolo-
gies have already emerged more than 40 years ago, they 
differ considerably from each other with respect to their 
rate of technological improvement. For example, digital 
control systems for loudspeakers is a rather mature digi-
tal technology with mostly incremental improvements. In 
contrast, improvements occur very rapidly in cloud com-
puting (Singh et al., 2021). Accordingly, not every digital 
technology is necessarily related to disruptive changes 
today and it is challenging to distinguish disruptive 
technologies from others. As a workaround, researchers 
have often focused on particular technologies that have 
already been found to be disruptive. The most promi-
nent example is the subject of artificial intelligence and 
its potential labor market implications.3 A recent study 
by Singh et al. (2021) takes a different and more holistic 
approach: Instead of focusing on one or a few selected 
technologies, these authors introduce a framework which 
allows to estimate different technologies’ improvement 
rates.4 This enables us to distinguish very dynamic (and 

potentially disruptive) technologies from slower evolving 
ones. Our paper thus builds heavily on this framework to 
approach our above-stated research questions.

To do so, we first create a new dataset from different 
sources of information. More specifically, we combine 
patent data from the United States Patent and Trademark 
Office (USPTO) with information on whether a patent 
contains a digital technology from Inaba and Squicciarini 
(2017) and a novel indicator for technological improve-
ment rates of 1757 distinct technologies that we obtain 
from Singh et al. (2021).5 To the best of our knowledge, 
our paper is the first to connect these different sources of 
information. This allows us to accurately analyze the state 
of cutting-edge innovation in Switzerland and abroad.

A main advantage of our constructed dataset is that it 
enables us not only to evaluate the quantity of digital and 
non-digital innovations across countries and industries 
(i.e., their stock or share of digital and non-digital pat-
ents). It also allows us to approximate their technologi-
cal quality (i.e., the technological improvement rate of 
a technology a patent is associated with). We show that 
this is relevant for two main reasons: First, the variation 
regarding the rate of technological improvement across 
digital technologies is rather large. Second, patents from 
the digital domain and such related to technologies with 
high improvement rates are associated with a higher 
probability to contain breakthrough innovations as meas-
ured by forward citations of patents.

To demonstrate the latter, we follow Kerr and  Kerr 
(2018) and estimate a linear probability model in which 
the left-hand side contains a dummy variable indicating 
whether a patent contains a breakthrough innovation, 
as measured by forward citations. We provide empirical 
estimates and robustness tests showing that this pattern 
is also robust for different industries. This suggests that 
being innovative in digital and fast-improving technolo-
gies is important in various industries of the economy, 
including, for example, the pharmaceutical or machinery 
industry, toward which Switzerland’s innovation system 
is relatively heavily specialized.

Yet, we show that Swiss innovations in most of the 
country’s core industries are not particularly directed 
toward fast-improving digital technologies when com-
pared to other countries. This is because the Swiss inno-
vation system is generally only weakly engaged in digital 
technologies, and digital innovations in Switzerland are 
less likely to occur in the fastest improving digital tech-
nologies. In non-digital domains, Switzerland’s position 

2  It should be mentioned that regulatory changes to the US intellectual prop-
erty system also contributed to the increasing amount of software-related pat-
enting in the USA (see, e.g., Graham & Vishnubhakat, 2013).
3  Recent studies include, for example, Acemoglu et  al. (2022), Goldfarb 
et al. (2023), or Tambe et al. (2020).
4  A somewhat related concept has been presented recently by Pezzoni et al. 
(2022), who derive technological trajectories based on patent data for a 
broad set of new technologies from their emergence to their largest impact. 
Besides a different methodology in determining and characterizing technol-
ogies compared to Singh et al. (2021), Pezzoni et al. (2022) focus specifically 
on new technologies, which make up only a portion of all patented innova-
tions. In contrast, Singh et al. (2021)’s proposed framework allows research-
ers to compare all technologies to each other on the basis of a single metric. 
This is particularly important when comparing digital to non-digital tech-
nologies, as the latter are often not new technologies.

5  Our data features all USPTO patents filed by inventors from 9 major pat-
enting countries—including Germany, the USA, China, and Switzerland—
between 1990 and 2015.
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is somewhat better, but it is also not among the leaders 
in rapidly evolving non-digital fields (except for innova-
tions from the medical and pharmaceutical industries). 
Overall, Switzerland can thus be considered as a laggard 
in terms of innovations in today’s fastest improving tech-
nologies. We argue that this could be a cause for concern, 
especially if adaption and catch-up become more difficult 
in the future, and if new technologies represent substi-
tutes for more traditional ones.

Our paper is related to different strands of the litera-
ture that study technological changes and their interplay 
with competitiveness. From a technical point of view, 
our paper builds heavily on prior work regarding the 
emergence and speed of technological innovations (see, 
e.g., Singh et  al., 2021; Triulzi et  al., 2020; Magee et  al., 
2016).6Singh et  al. (2021) provide us with our empiri-
cal measure for technologies’ improvement rates, which 
is the basis for all empirical analyses in this paper. Our 
paper extends prior work in this area in two ways: First, 
we demonstrate a robust association between patented 
inventions’ corresponding technological improvement 
rates and their probability to contain a breakthrough 
innovation as measured by forward citations. Second, we 
assess the extent to which countries’ innovation systems 
are specialized with respect to fast-improving technolo-
gies, with a particular focus on Switzerland.

With this latter regard, our paper has a connection 
to several studies that focus on the state of innovation 
across industries in different countries. For example, 
Kelly et al. (2021) use patent texts to investigate long-run 
trends in innovation activities across different industries 
considering data back to 1840. Their results imply that 
innovation activities have been mainly dominated by the 
information technology industry in recent years. Another 
example is Confraria et  al. (2021), who have a similar 
focus and investigate emerging technology patterns. One 
of their main findings is that European firms are not par-
ticularly well positioned in digital innovations such as 
software engineering and semiconductor devices. Fur-
thermore, reports by the OECD (2019) or the European 
Commission (2017) provide extensive descriptive over-
views of digital trends across countries, illustrating that 
firms from EU countries are typically lagging behind their 
peers from the USA and Japan in digital innovations.

With this respect, our paper also has a loose connec-
tion to several contributions that are focusing on the 
impact of early involvement in disruptive technologies on 
competitiveness. A major example is Bloom et al. (2021), 
who identify a set of 29 disruptive technologies from the 
last decades and show for the USA that regions who were 

pioneers in inventing these technologies have obtained 
long-lasting benefits in terms of wages and high-skilled 
employment. Tambe et al. (2020) focus on the firm level 
and demonstrate that digital capital accumulation pre-
dicts the productivity of firms in the USA in the near 
future.

Finally, our paper’s main focus is on Switzerland, 
whereas existing studies focus mainly on counting the 
stock of digital patents in selected technological areas 
(Gramke & Glauser, 2017, in German language) indus-
tries (Rutzer & Weder, 2021, also in German language) 
or on the general scope of patent activities of the Swiss 
innovation system (Grampp et  al., 2018, also in Ger-
man language). These studies use patent data and com-
pare the innovativeness of Switzerland in digital domains 
with other countries. Besides overall trends, the work 
of Gramke and Glauser (2017) also investigates in more 
detail the positioning of Switzerland in some impor-
tant fields such as AI, the Internet of things, and robot-
ics. The general conclusion of these three studies is that 
Switzerland is not among the top innovators in terms of 
the number of digital patents. Finally, also OECD (2019) 
focuses on Switzerland and highlights that the country’s 
recent patent activities in ICT-related fields are below 
the OECD average. What we add to this literature is an 
analysis that additionally takes into account the spe-
cialization patterns of the Swiss innovation system with 
respect to its orientation toward faster or slower improv-
ing technologies.

The remainder of this paper is organized as fol-
lows. Section  2 focuses on the concept of technological 
improvement rates and describes data sources that allow 
us to investigate it. It then shows that digital technologies 
are among the most dynamic technologies and provide 
empirical estimates suggesting that patents from the digi-
tal domain and those related to fast-improving technolo-
gies are associated with a higher probability to produce 
breakthrough innovations. Section  3 examines patterns 
of the Swiss innovation system with respect to digital and 
fast-improving technologies, compares them with other 
countries, and discusses the findings. Section 4 concludes 
the paper.

2 � Technological improvements and digital 
technologies

New and improved technologies are crucial ingredients 
for economic growth. After they first appear, inventors 
constantly add new functions, develop new methods 
and find new implementations that make a technology 
more valuable, efficient, and effective. As a result, tech-
nologies constantly evolve and improve. One well-known 
example for this is the famous Moore’s law (named 
after Intel co-founder Gordon Moore), which states 

6  Recent summaries can be found, for example, in Singh et al. (2021) or Bau-
mann et al. (2021).
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that computer processing power doubles approximately 
every 18–24 months (Gustafson, 2011). Similar patterns 
can be observed for many other technological domains 
but their rate of improvement typically varies consider-
ably: Some technologies evolve at a very fast pace, while 
others progress slowly (Magee et  al., 2016). A natural 
question arising from this is which technologies are the 
fastest-improving ones. Previous research has mainly 
relied on case studies to evaluate progress across differ-
ent technologies which makes comparisons rather diffi-
cult.7 In turn, they offer some insight with regard to the 
technologies that evolve particularly fast. Herrmann et al. 
(2018) for health care, Ferràs-Hernández et  al. (2017) 
for automotives, and Midttun and Piccini (2017) for the 
energy sector all argue that especially digital technolo-
gies are improving at remarkably fast pace across these 
very different sectors of the economy. But beyond such 
case studies, it remains challenging to investigate techni-
cal improvement rates for a wide range of detailed tech-
nologies in a standardized way. To approach this, Singh 
et al. (2021) provide a framework that allows to capture 
annual improvement rates of an extensive set of 1757 
granular technologies. These technologies range from 
“Network management specifically client-server applica-
tions” to “IT based prepayment for services,” “Automatic 
vehicle washing,” or “Hitching assemblies for towing 
vehicles.” Since these are very distinct technologies, their 
improvement rates also vary considerably.8Singh et  al. 
(2021) build on an extensive previous literature to arrive 
at these improvement rate estimates. A key contribution 
in this regard is Magee et al. (2016) who calculate tech-
nical improvement rates for 28 fields based on different 
“real-world” metrics (e.g., based on the cost of watts per 
hour for batteries, of sequencing a genome, or of print-
ing one mm3 per second). In a follow-up contribution, 
Triulzi et al. (2020) identify patents that belong to the 28 
technologies whose annual improvement rates have been 
determined by Magee et al. (2016). They then use infor-
mation from these patents to train an empirical model 
that is able to accurately predict the improvement rates of 
the technologies these patents are associated with. Even-
tually, Singh et al. (2021) use this trained model to extend 
and predict improvement rates for 1757 technologies. 
“Appendix A.1” provides methodological details regard-
ing this framework.

The 1757 technologies Singh et al. (2021) focus on were 
constructed endogenously using the classification overlap 
method introduced by Benson and Magee (2013, 2015) and 
are assigned unique identifiers that can be associated with 
patents.9 Hence, we can combine information from patent 
data (e.g., on the location where a patented invention was 
developed) with the improvement rate of the technolo-
gies a patent is associated with. This allows us to investi-
gate the rate of technology improvement across countries 
and industries. Naturally, however, the focus on patents 
also means that we only capture patented inventions in our 
analysis. This is an important yet common limitation in the 
corresponding literature. For example, it is well established 
that not every invention is patentable (e.g., Griliches, 1998) 
and some important innovations may never be patented 
(e.g., Fontana et al., 2013). Furthermore, the propensity to 
patent and to cite other patents varies across industries 
(e.g., Lerner & Seru, 2022; Kuhn et al., 2020) and differences 
in patenting over time can be affected by legal changes—
especially for ICT (Graham & Vishnubhakat, 2013). This   
limitation   could be mitigated by utilizing alternative data 
sources that proxy innovative activity more reliably. How-
ever, finding such data has been extremely difficult, which 
is why patent data are generally thought of as an imperfect 
but relatively good measure of inventive activity (e.g., Acs 
et al., 2002). Other challenges of using patent data, such as 
differing propensities to patent across technology fields, 
can be more directly approached with appropriate tech-
niques, which we describe in the following. In doing so, 
we also present the patent dataset we use for our study and 
explain how we combine different sources of information 
for out final dataset.

2.1 � Dataset construction
We consider all granted USPTO patents for 9 important 
inventor countries obtained from the official USPTO pat-
entsview database and leverage information from Patstat 
on DOCDB patent families to avoid double counting of 
patents containing the same invention.10, 11 In particular, 
we only consider the first patent filed at the USPTO from 

7  See, e.g., Bloom et  al. (2021), Sharifzadeh et  al. (2019), Herrmann et  al. 
(2018), Benson et al. (2018), Ferràs-Hernández et al. (2017), Midttun and Pic-
cini (2017) for some recent contributions.
8  A list of the ten fastest and ten slowest improving technologies of their 
framework can be found in Table  3 in “Appendix.” The full list can be 
accessed at https://​zenodo.​org/​record/​47798​32#.​Yjstn-​fMK38.

9  The identifiers are constructed from the overlapping first three-digit UPC 
codes and first four-digit IPC codes of the most relevant patents that have 
been assigned to each technology. As shown in Benson and Magee (2015), 
such endogenously created technologies have a high relevance and a high dif-
ferentiation with respect to knowledge and technical functionality, which has 
been further confirmed in Singh et al. (2021) who demonstrate that 97.2% of 
USPTO patents can be attributed to at least one of their endogenously created 
technologies.
10  Besides Switzerland, we consider the eight most important inven-
tor countries based on the total number of patents granted at the USPTO 
between 2010 and 2015 for our analyses. These are Canada, China, France, 
Germany, Japan, South Korea, the UK, and the USA.
11  Patstat can be accessed at https://​data.​epo.​org/​expert-​servi​ces/​index.​html. 
An introduction to the database is given in De Rassenfosse et  al. (2014). A 
DOCDB patent family is composed of different patents containing the same 
technical invention, i.e., all having the same prior art (Webb et al., 2005).

https://zenodo.org/record/4779832#.Yjstn-fMK38
https://data.epo.org/expert-services/index.html
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all patents belonging to the same DOCDB patent fam-
ily. We then attribute technology improvement rates from 
Singh et al. (2021) to these patents. To do so, we gather the 
patents’ International Patent Classification (IPC) number(s) 
and their US Patent Classification System (UPC) number(s) 
which allow us to merge technology improvement rates to 
patents.12 For USPTO patents UPC codes are only avail-
able until early 2015. Thus, the time span of our analysis 
is limited to patents filed till the year 2015, as we cannot 
add improvement rates to patents filed later. It is important 
to keep in mind that we thus assign the same rate of tech-
nological improvement to every patent belonging to a cer-
tain technology from Singh et al. (2021). Hence, a patent’s 
improvement rate refers to its corresponding technology 
and not to a hypothetical improvement the patent makes to 
its corresponding technology.

Next, we use the 4-digit IPC number(s) to differenti-
ate whether a patent is a digital patent or not. We build 
on Inaba and Squicciarini (2017) who determine for each 
4-digit IPC number whether the class is a digital technol-
ogy or not. Each patent is assigned to one or more IPC 
numbers. We define a patent as digital if it belongs to at 
least one 4-digit IPC number that has been classified as 
digital by Inaba and Squicciarini (2017).13 This information 
enables us to distinguish whether a patent or a technol-
ogy is a digital one. Further, we also map patents to NACE 
industries. To do so, we use the correspondence table from 
Patstat between 4-digit IPC numbers and NACE indus-
tries (see Looy et al., 2014). Each patent is assigned a prob-
ability of belonging to a certain NACE industry based on 
its four-digit IPC number(s), and we assign a patent to the 
industry with the highest probability.14

In a next step, we gather metadata stated on patents 
from our USPTO sample. We consider information on the 
year of a patent’s filing, the year of its publication, and the 
country address(es) of its inventor(s). The latter are used 
to map patents to countries. If a patent has inventors from 
several countries, we assign the patent to each country for 
which an inventor address exists.15 Furthermore, we extract 
the number of inventors, the number of claims of a pat-
ent, and the number of different countries involved in the 
research that led to the patent. Finally, we also approximate 
the importance of patents. To do so, we use information 
on patent citations and calculate the number of citations a 
patent receives from subsequent patents (so-called forward 
citations). Forward citations are a well-established measure 
in the literature following a simple underlying idea: Patents 
that protect very valuable innovations are receiving more 
citations from subsequent patents (see, e.g., Kogan et  al., 
2017; Hall et al., 2005). Thus, forward citations can be used 
as an approximation for an innovation’s importance and 
patents can be ranked according to their number of for-
ward citations. We consider for each patent the number 
of received forward citations within five years after publi-
cation. Following Kelly et al. (2021), Grampp et al. (2018) 
or Gramke and Glauser (2017), we define a patent as con-
taining a breakthrough (or significant) innovation if it is 
among the 10% most cited patents within its corresponding 
World Intellectual Property Organization (WIPO) technol-
ogy field and publication year.16 The combined information 
from all these sources allows us to perform analyses across 
technologies, countries, and industries in the remainder of 
this paper.

2.2 � Digital technologies, improvement rates, 
and breakthrough innovations

We first want to investigate improvement rate differences 
across technologies. Since case study evidence points to 
significant differences between the digital and non-dig-
ital domain, we start by focusing on improvement rate 

12  Note that we consider patents that can be attributed to multiple technol-
ogies (and thus multiple improvement rates) multiple times. An alternative 
would be to calculate the average among all assigned technology improve-
ment rates. However, our chosen approach is much better suited for the 
purpose of our analysis which includes to focus on the spread of all technol-
ogies across countries and industries and not just a mean rate of improve-
ment.
13  Using such an approach defines innovations also as digital if they “only” 
combine digital methods or components with non-digital ones. An example 
might be parts of a magnetic resonance imaging device (non-digital electri-
cal/medical engineering) that features a machine learning algorithm (digital 
patent) to detect tumors or some smart home applications combining both 
digital technologies and electrical/engineering technologies.

14  When mapping patents to industries, one could also use fractional 
counts. We refrain from doing so because this would complicate our empiri-
cal analyses. However, to test the robustness of our choice we calculate 
the correlation between the average industry improvement rates across six 
industries using i) the highest probability mapping and ii) fractional counts. 
It is reassuring that the correlation is 0.999 across the NACE industries of 
our set of 9 countries and 0.992 for Swiss industries alone. The correlation 
decreases slightly to 0.987 (0.983 for Switzerland alone) when only digital 
patents are considered. The main reason for this high correlation is the large 
number of patents that are unambiguously mapped to one industry. For 
more details, see Fig. 6 in “Appendix” showing a cumulative density plot of 
mapping probabilities.

15  The literature uses mainly two different methods to assign patents to 
countries based on inventor addresses (OECD, 2009). Besides the simple 
count used in our paper, patents can also be assigned to countries on a frac-
tional base. In this case, the number of inventors belonging to a country 
is used as weight. Since we are primarily interested in the spread of tech-
nologies across all involved inventor countries, we choose the count-based 
method.
16  The WIPO classifies each patent to one or more of 35 aggregated tech-
nology fields (for details, see Schmoch, 2008). By creating forward citation 
percentiles for each publication year and technology group, we take into 
account differing citation distributions between technology groups and over 
time (see, for example, Jaffe & De Rassenfosse, 2019). If a patent has been 
assigned to more than one WIPO technology field and is classified one time 
as within the 10% and another time not, we classify it as a breakthrough 
patent. Note that building on Patstat information also allows us to not only 
include citation information from USPTO patents, but also from patents 
registered at the EPO and WIPO.
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differentials between digital and non-digital technolo-
gies. To do so, we check for each of the 1757 technologies 
we obtained from Singh et al. (2021) if their correspond-
ing IPC 4-digit number is labeled as digital by Inaba and 
Squicciarini (2017) and classify it accordingly. We can 
then visualize improvement rates for the two groups in 
Fig. 1.17

The average and median rate of technological improve-
ment is clearly higher for digital technologies (45.6 and 
29 vs. 11.7 and 9, respectively), and the fastest improving 
technologies are all to be found in the digital group. This 
clearly highlights how digital technologies are progress-
ing at remarkable pace. At the same time, the variation 
is large within both groups—and substantially more pro-
nounced for digital technologies. This indicates that there 
are substantial differences within the digital domain 
and some digital technologies are evolving much more 
dynamically than others. However, even though several 
digital technologies have modest improvement rates, the 
current frontier of technological improvement seems 
clearly directed toward digital technologies.

But does faster technological progress also mean that 
these technologies produce more breakthrough innova-
tions compared to slower evolving ones? We can inves-
tigate this crucial question by analyzing whether patents 
from the digital domain and related to technologies with 
high improvement rates are likelier to contain a break-
through innovation as measured with forward citations 
of patents. To do so, we follow a similar approach as Kerr 
and Kerr (2018) and estimate a linear probability model 
of the following functional form:

TPi is a dummy variable indicating whether patent i 
belongs to the breakthrough-patent group proxied by our 
previously explained measure that is based on the top 
10% forward citations (FWD90). We estimate three spec-
ifications: In the first one, the right-hand side contains a 
dummy variable Di stating whether patent i belongs to 
a digital technology or not. In the second, we consider 
the improvement rate of the technology of patent i, ki . 
In the third one, we include the digital dummy and also 
add an interaction term between the digital dummy and 
the improvement rate, Di : ki . This allows us to analyze 
whether an association exists between the improve-
ment rate and breakthroughs for the group of digital 
and non-digital technologies alike. Thus, β1 , β2, and β3 
are our parameters of interest. Moreover, we include in 
all specifications several variables to control for differ-
ent types of research and development (R&D) input that 
might impact the importance of the innovation. We use 
the number of inventors invi and the number of distinct 
inventor countries num_ctryi as proxies for the employed 
human capital. The variable claimsi contains the number 
of claims of a patent. Patent claims represent the intel-
lectual property protection provided by a patent. They 
can thus be seen as an indicator for a patent’s technologi-
cal scope, which might affect the number of its received 
forward citations (Kerr & Kerr, 2018). In addition, we 
use the number of backward citations bwd_citsi to cap-
ture the amount of external knowledge which has been 
embodied in the patent. Each patent belongs to one 
industry and year. In order to take into account unob-
served heterogeneity across industries and years, we also 
consider industry (j), year (t), and industry-year fixed 

(1)

TPi = β1Di + β2ki + β3Di : ki + β4invi + β5num_ctryi
+ β6claimsi + β7bwd_citsi + FEj,t + εi.

Fig. 1  Technological improvement rates of digital and non-digital 
technologies. Notes: The boxplot shows the distribution of 
improvement rates of 1753 different technologies from Singh et al. 
(2021). The split into the digital or non-digital group is based on the 
approach proposed by Inaba and Squicciarini (2017).  The horizontal 
line shows the median, the big dot the mean, the upper limit of the 
box the  25th, and the lower limit the 75th percentile. The length of 
the whisker shows the data that are within 1.5 times the interquartile 
range. Outliers are marked by small dots

17  There are 362 digital and 1391 non-digital technologies. Four of the 1757 
technologies of Singh et al. (2021) are not part of our patent data and there-
fore not considered.
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effects summarized by the vector FEj,t.18 Finally, ǫi is the 
error term of the model and we cluster standard errors by 
industry j.

Table 1 presents the estimation results for the time win-
dow 1990–2015. In column (1), we take only the digital 
dummy, control variables, and fixed effects into account. 
As the positive coefficient shows, patents from digi-
tal technologies are associated with more breakthrough 
innovations as measured with forward citations of pat-
ents: All else equal, our estimates imply that a digital 
patent has a 1.86 percentage points increased likelihood 
of being a breakthrough innovation.19 Next, we focus 

on the technology improvement rate. Column (2) shows 
a positive association for the improvement rate k with 
our breakthrough indicator, implying that patents from 
faster-improving technologies have an increased likeli-
hood of containing a breakthrough innovation. In par-
ticular, according to our estimate, a patent belonging to a 
technology with a ten percentage points higher improve-
ment rate has, ceteris paribus, a 0.3 percentage points 
higher likelihood of containing a breakthrough innova-
tion.20 In column (3), we analyze whether this positive 
association from column (2) can be observed for both the 
digital and non-digital group. The results show a positive 
association for both groups, but it is much stronger for 
the non-digital domain. While this might come as a sur-
prise at first sight, it can be well explained. First, improve-
ment rates of digital technologies are much more widely 
dispersed. Second, they have a higher average improve-
ment rate. This implies a high multicollinearity between 
the digital dummy and the interaction term digital  :  k, 
which is also visible by the increased coefficient of the 
digital dummy in column (3) compared to its counter-
part in column (1). In Tables 7, 8, and 9 of “Appendix,” we 
show that the pattern from Table 1 remains very robust 
when considering different subgroups of years, different 
time thresholds for forward citations to indicate break-
through innovations, and some alternative measures for 
breakthrough innovations, respectively.21

Taken together, these results show that patents belong-
ing to the digital domain or a technology with faster pro-
gress are associated with a higher likelihood of containing 
a breakthrough invention as measured by forward cita-
tions. This supports our initial hypothesis that the cur-
rent frontier of technological improvement seems clearly 
directed toward fast-improving digital technologies. But 
does this pattern also hold for different industries? To 
evaluate this, we now focus on six different industries, 
which are of particular importance for the Swiss innova-
tion system.22

Table 1  Technological improvement rates and breakthrough 
innovations

All estimations include USPTO patents from Canada, China, France, Germany, 
Japan, South Korea, Switzerland, the UK, and the USA of the filing years 1990–
2015. If a patent has inventors from more than one of those countries, it will 
only take into account once. The first model specification shows an association 
between digital domains and breakthrough innovations across all industries. 
The second considers an association between technology improvement rates 
and breakthrough innovations, and the third do the same but distincts between 
digital and non-digital domains. In order to show associations in percentage 
points, we have multiplied the FWD90-dummy by 100. The industry fixed effects 
are at the level of the six industries included in the analysis, namely Computer/
ICT, Machinery, Medical, Electrical, Chemical, and Pharma. The standard errors 
in parentheses are also clustered at this industry level. Significance levels for the 
coefficients are indicated as: p∗ < 0.1 ; p∗∗ < 0.05 ; p∗∗∗ < 0.01

Dependent variable FWD90

Model (1) (2) (3)

Digital 1.859*** 2.991***

(0.427) (0.691)

k 0.030***

(0.010)

Non-digital: k 0.148***

(0.022)

Digital: k 0.023***

(0.004)

Control variables

inv � � �

num_ctry � � �

Claims � � �

bwd_cits � � �

Fixed effects

Industry � � �

Year � � �

Year-Industry � � �

Observations 4,259,239 4,259,239 4,259,239

18  For the econometric estimations, we do not assign patents to countries. 
Otherwise a patent resulting from an international R&D activity would be 
added multiple times if the inventors are located in more than one of the 
countries considered.
19  Note we have multiplied the indicator dummy TPi by 100 to show asso-
ciations in percentage points.

20  This association might appear low initially. But considering that tech-
nological improvement rates range from 2 to 216 percent, we note that the 
probability of a patent associated with the latter improvement rate to contain 
a breakthrough innovation is 6.42 percentage points higher compared to the 
former.
21  In addition, in Table  15 of “Appendix” we indicate that the association 
between technology improvement rate and breakthrough innovations is sig-
nificantly different for the digital and non-digital domains.
22  We focus on the six Swiss industries that have filed the most patents in 
recent years and are therefore of great importance for Switzerland as an 
innovation hub. These are the Chemical, Computer/ICT, Electrical, Machin-
ery, Medical, and Pharma industry, as listed in Table 6. The respective NACE 
codes and total number of patents are shown in Table  4 in “Appendix.” A 
allocation according to different countries and industries is again shown in 
“Appendix” in Table  5. The Nomenclature générale des Activités économ-
iques dans les Communautés Européennes (NACE) Rev. 2 system of the EU 
is identical to the Swiss NOGA 2008 system up to the fourth level. For more 
information, see https://​www.​bfs.​admin.​ch/​bfs/​en/​home/​stati​stics/​indus​try-​
servi​ces/​nomen​clatu​res/​noga.​asset​detail.​344513.​html.

https://www.bfs.admin.ch/bfs/en/home/statistics/industry-services/nomenclatures/noga.assetdetail.344513.html
https://www.bfs.admin.ch/bfs/en/home/statistics/industry-services/nomenclatures/noga.assetdetail.344513.html
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As a starting point, Fig.  2 depicts descriptive statis-
tics for the technological improvement rate across 
industries based on patents from 2010 to 2015.23 The 
same overarching pattern as shown before in Fig. 1 for 
technologies also holds for these six industries: The 
digital group’s average rate of technological improve-
ment is higher in all industries. Apart from that, there 
are interesting patterns across industries. First of all, 
the average technological improvement rate is rela-
tively similar across industries for the non-digital 
group, ranging from 7.8 in the pharmaceutical indus-
try to 19.0 in the computer/ICT industry. Substantial 
differences only emerge when focusing on the digital 

group, whose level differs considerably. For example, 
digital technologies in the machinery industry have a 
substantially higher average improvement rate of 39.7 
compared to the pharmaceutical or chemical industry, 
with 13.5 and 23.9, respectively. In other words, com-
panies in machinery are much more intensively incor-
porating fast-improving digital technologies into their 
R&D activities. Could this mean that digital technolo-
gies are simply less important in the pharmaceutical 
or chemical industry, for example? If this were the 
case, fast-improving digital innovations should not be 
more valuable than non-digital ones in these indus-
tries. Again, this can be evaluated using patent data. As 
before, we estimate the following simple linear model 
to investigate this question empirically:

In comparison with model (1), we now additionally con-
sider industry-interaction terms denoted by ... : INDj , 

(2)

TPi = β1jDi : INDj + β2jki : INDj + β3jDi : ki : INDj

+ · · · + β4invi + β5num_ctryi + β6claimsi

+ β7bwd_citsi + FEj,t + εi.

Fig. 2  Technological improvement rates of digital and non-digital technologies across industries. Notes: 1757  different improvement rates 
from Singh et al. (2021) are assigned to USPTO patents of the filing years 2010–2015. This results in a total of 283’431 USPTO patents. Patents 
are then split into the digital or non-digital group based on the approach proposed by Inaba and Squicciarini (2017) and assigned to industries 
according to De Rassenfosse et al. (2014). The horizontal line shows the median, the big dot the mean, the upper limit of the box the 25th, and the 
lower limit the 75th percentile. The length of the whisker shows the data that are within 1.5 times the interquartile range. Compared to Fig. 1, we do 
not show outliers to increase clarity

23  As mentioned before, the time span is limited till the year 2015, because 
improvement rates can only be added to USPTO patents up to this year. Con-
sidering a 5-year window allows us to make an as up-to-date assessment as 
possible, and at the same time, to consider a sufficient number of patents. 
Since it takes on average 23.3 months (USPTO, 2021) for a patent to be 
granted (and for some even longer), this selection has the additional advan-
tage that most patent applications filed during the 2010–2015 time period 
have either been rejected or granted and are not still pending. Our data for 
this analysis therefore contains a nearly complete picture of all granted appli-
cations of this period.
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where j marks the industry to which patent i belongs to. 
Again, we estimate three specifications. In the first one, 
we include the interaction term Di : INDj , which allows 
us to analyze whether digital domains are associated 
with more breakthrough innovations as measured with 
forward citations of patents than non-digital ones at the 
industry level. In the second specification, we use the 
second interaction term ki : INDj . This gives indications 
on whether the positive association between improve-
ment rates and breakthroughs also hold for different 
industries. In the last specification, we consider the inter-
action terms Di : INDj and Di : ki : INDj . This enables us 
to investigate for different industries whether the associa-
tions are evident for digital and non-digital technologies 
alike. Hence, the parameter vectors β1j , β2j , and β3j are 
of interest to us. The control variables and fixed effects 
are similar to model (1) and used in each specification. 
Again, we cluster standard errors at the industry level.

Table 2 shows the results. As one can see from column 
(1), the positive association between digital technologies 
and our indicator for breakthrough innovations holds for 
all investigated industries. The same is true for faster-
improving technologies (column 2). Thus, the previous 
results across all industries were not solely driven by 
some industries but show up for all considered industries. 
Moreover, there exist substantial differences between the 
industries. In particular, the positive associations linked 
to a higher improvement rate are particularly strong in 
the electrical and medical industry, and rather low in the 
machinery and, especially, in the computer/ICT industry. 
It is now interesting to analyze whether the associations 
are more driven by innovations in the digital or non-dig-
ital domain. First of all, the first rows of column (3) show 
that patents from the digital domain are associated with 
an increased likelihood of containing a breakthrough 
innovation as measured with forward citations of patents 
in all six industries. At the same time, this digital level 
effect is accompanied by a reduced association between 
improvement rates and breakthrough innovations when 
compared to non-digital domains: All else equal, faster-
improving technologies are more strongly associated 
with breakthroughs in the non-digital domain compared 
to the digital one. This even goes so far that there is no 
longer an association between the improvement rate and 
our breakthrough indicator for the digital domain in the 
chemical and medical industry.24 Still, in these industries, 
the digital domain as such is associated with more break-
throughs as measured with forward citations of patents, 

albeit for these industries it seems not to matter whether 
these are faster or slower progressing digital technolo-
gies. At the same time, however, a positive association 
between technology improvement rates and our indica-
tor of breakthrough innovations shows up for the non-
digital domain for all investigated industries. In addition, 
in Tables 10, 11, 13, and 14 of “Appendix,” we show that 
the pattern from Table  2 remains robust when different 
subsets of years, different time thresholds for forward 
citations to indicate breakthrough innovations, and some 
alternative measures of breakthrough innovation are 
considered, respectively. This heterogeneity in the asso-
ciation between digital and non-digital domains at the 
industry level shows that it is important to consider both 
dimensions (i.e., distinction between digital and non-dig-
ital domains and differences in the improvement rates of 
technologies).25

The results of these regressions can thus be summarized 
as follows: Patents of the digital domain are associated with 
a higher probability of containing a breakthrough inno-
vation as measured with forward citations. At the same 
time, this is true for technologies with higher improve-
ment rates. When differentiating between digital and 
non-digital technologies at the industry level, the latter 
association is still evident for the non-digital domain. For 
the digital domain, in turn, it only remains valid for some 
industries. However, for all industries, digital innovations 
per se are associated with a higher incidence of break-
through innovations. These results suggest that compa-
nies which are relatively strongly specialized in digital and 
rapidly improving technologies should also see a higher 
number of breakthrough innovations. Consequently, this 
finding should also translate to the level of industries and 
countries: If a country’s innovation system produces more 
inventions in digital and rapidly improving technologies, 
it should benefit from a higher number of breakthroughs. 
And since early involvement in innovations in disruptive 
fields has been found to strongly affect long-term prosper-
ity (e.g., Bloom et al., 2021), our empirical results suggest 
that innovation systems that are involved in bringing for-
ward the fastest improving technologies may benefit from 
substantial benefits in the future.

3 � The state of digital innovation in Switzerland 
and abroad

Against the background of our empirical results, we 
next analyze the specialization patterns of Swiss indus-
tries toward digital and fast-improving technologies in 
comparison with other important countries. We start by 

24  In Table  12 of “Appendix,” we show that there exists a high positive cor-
relation between digital technology domains and improvement rates for all 
observed industries.

25  Table  15 in “Appendix” explicitly shows this heterogene-
ity by considering a model with all three interaction terms 
β1jDi : INDj + β2j ki : INDj + β3j ki : Di : INDj simultaneously, with β3j as the 
parameter vector of interest.
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examining the shares of Swiss industries’ digital patents 
and compare them to those of other countries.26 Figure 3 

shows that Switzerland’s share of digital patents in an 
industry in relation to all patents of that industry is rather 
low across all industries, whereas the distance to the first 

Table 2  Technological improvement rates and breakthrough innovations across industries

All estimations include USPTO patents from Canada, China, France, Germany, Japan, South Korea, Switzerland, the UK, and the USA of the filing years 1990–2015. 
If a patent has inventors from more than one of those countries, it will only take into account once. The first model specification shows associations between 
digital domains and breakthrough innovations for different selected industries. The second considers associations between technology improvement rates and 
breakthrough innovations, and the third do the same but distincts between digital and non-digital domains. In order to show associations in percentage points, we 
have multiplied the FWD90-dummy by 100. The industry fixed effects are at the level of the six industries included in the interaction terms. The standard errors in 
parentheses are also clustered at this industry level. Significance levels for the coefficients are indicated as: p∗ < 0.1 ; p∗∗ < 0.05 ; p∗∗∗ < 0.01

Dependent variable FWD90

Model (1) (2) (3)

Digital: Chemical 5.736*** (0.459) 8.035*** (0.704)

Digital: Computer/ICT 1.843*** (0.279) 2.062*** (0.232)

Digital: Electrical 4.806*** (0.198) 6.985*** (0.391)

Digital: Machinery 0.866*** (0.295) 1.260*** (0.254)

Digital: Medical 3.596*** (0.413) 7.333*** (0.690)

Digital: Pharma 1.536*** (0.343) 1.501*** (0.432)

k:Chemical 0.117*** (0.026)

k:Computer/ICT 0.021*** (0.006)

k:Electrical 0.256*** (0.015)

k:Machinery 0.054*** (0.009)

k:Medical 0.167*** (0.031)

k:Pharma 0.096*** (0.035)

Non-digital: k:Chemical 0.191*** (0.021)

Digital: k:Chemical − 0.005 (0.020)

Non-digital: k:Computer/ICT 0.086*** (0.017)

Digital: k:Computer/ICT 0.020*** (0.007)

Non-digital: k:Electrical 0.415*** (0.030)

Digital: k:Electrical 0.124*** (0.016)

Non-digital: k:Machinery 0.167*** (0.016)

Digital: k:Machinery 0.039*** (0.014)

Non-digital: k:Medical 0.227*** (0.044)

Digital: k:Medical 0.020 (0.023)

Non-digital: k:Pharma 0.087**  (0.040)

Digital: k:Pharma 0.059*    (0.034)

Control variables

inv � � �

num_ctry � � �

Claims � � �

bwd_cits � � �

Fixed effects

Industry � � �

Year � � �

Year-Industry � � �

Observations 3,243,802 3,243,802 3,243,802

26  We focus on the same six industries as before and again take into account 
all patents filed by inventors from 9 inventor countries at the USPTO between 
2010 and 2015. It is important to note here that all country comparisons in 
this paper are based on the residence of patent inventors (see Sect. 2). Hence, 
our descriptive analyses make an assessment about the specialization of a 
country’s overall innovation system and not about the competitiveness of its 
firms (which can perform parts of their research abroad). For example, Fig. 3 
suggests that innovations developed in Switzerland are much less directed 
toward digital technologies compared to other countries.
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ranked country is particularly large for the chemical and 
pharmaceutical industries.27

It is noteworthy that Switzerland’s innovation system is 
relatively heavily specialized in exactly these two indus-
tries compared to most other countries (a further one 
being the medical industry, see Table  6 in “Appendix”): 

Over the time window of our study, the pharmaceuti-
cal industry represented 22% of Swiss patenting, and 
the chemical industry accounted for another 10%. Yet, 
the amount of digital patenting in these two core Swiss 
industries is about three to six times lower compared to 
the leading countries, Japan and South Korea. Another 
industry with substantial weight for Switzerland is the 
machinery industry (14% of Swiss patents). But again, 
digital patenting is much lower compared to the leading 
countries. Similar and consistent to the findings of, e.g., 
Gramke and Glauser (2017) and Grampp et  al. (2018), 
Fig. 3 thus clearly demonstrates that Switzerland’s inno-
vation system is not particularly directed toward the 
digital domain—and that this holds for all investigated 
industries. This could be a problem since, as we have pre-
viously shown, such innovations are associated with a 
higher probability of breakthrough innovations.

However, in addition to simply examining digital pat-
enting shares, we can now also focus on the improvement 
rates of the technologies Swiss digital patents are associ-
ated with. This provides an indication about whether the 
relatively small number of Swiss digital patents is never-
theless specialized toward fast evolving technologies. Fig-
ure 4 provides the respective graphical evidence. Similar 
to before, the figure again suggests that Switzerland lags 

Fig. 3  Share of digital patents of different industries and countries. Notes: Calculations based on the definition for digital IPC classes from Inaba and 
Squicciarini (2017) that were matched to USPTO patents between 2010 and 2015. The figure shows the number of digital patents of industry j of 
country c relative to the total number of patents of industry j of country c, normalized by the value of the respective Swiss industry:  

(num_digital_patj,c/num_patj,c)

(num_digital_patj,c=CH/num_patj,c=CH)

27  The figure shows the share of digital patents of an industry of a country in 
relation to all patents of that industry and country, normalized by the corre-
sponding Swiss share. This measure is often used to investigate technology 
specializations of a country, where a value greater (lower) than one means 
that the respective other country has relatively more (less) digital patents in an 
industry than (in our case) Switzerland. By using the share of digital patents, 
this measure also takes differences in the size of industries between countries 
into account, as long as the share of digital patents does not systematically 
depend on the size of an industry. This, however, seems not to be the case 
for our sample. First, we have calculated the correlation between the share of 
digital patents of a country’s industry and its average number of employees 
(i.e., proxy for size) between 2010 and 2015. For the number of employees, we 
used data from the OECD-STAN database. Unfortunately, we could not calcu-
late the number of employees for Medical Technology and Computer/ICT, as 
these are composed of different NOGA sub-industries. Moreover, figures for 
China are not included in the STAN database. For the remaining subsample of 
eight countries and four industries, there is virtually no correlation (although 
we are aware of the fact of the really small sample of only eight observations 
for each industry): Chemical 0.00878, Electrical 0.0634, Machinery 0.00609, 
and Pharma − 0.0216. Second, as shown in Fig. 7 of “Appendix,” the ranking of 
the countries remains quite stable if the absolute number of digital patents in 
relation to the employment of an industry and country is considered. In par-
ticular, Switzerland is also at the lower end of the rankings in all industries.
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behind the leading countries. Swiss digital innovations 
generally occur in digital technologies with rather low 
improvement rates, and Switzerland’s backlog against 
other countries is most pronounced for the medical 
industry. For this industry, the average improvement rate 
is only about half of that of the UK. Furthermore, Swit-
zerland lags the top-ranked country by around 60% in 
the pharmaceutical industry, by around 30% in the elec-
trical industry, and by around 15% in the machinery and 
computer/ICT industries.28 For these latter four indus-
tries, our regression estimates have shown significant 
relationships of digital patents’ improvement rates with 
their breakthrough potential. Thus, Switzerland’s lack 
of specialization toward the fastest improving digital 

technologies might indicate a further threat to its future 
potential to produce breakthroughs in these industries.

That said, fast-improving technologies naturally exist 
outside the digital sphere as well, and the Swiss innova-
tion system might be better positioned in the non-digi-
tal domain. Figure 9 in “Appendix” illustrates that Swiss 
innovations related to non-digital technologies have 
similar improvement rates in the medical and pharma-
ceutical industry compared to other countries. But for 
the chemical, computer/ICT, electrical, and machinery 
industries, Switzerland is again positioned among the 
laggards, whereas the backlog is particularly substantial 
in the electrical and machinery industries. Hence, there 
is also a backlog for Switzerland compared to other coun-
tries in non-digital technologies. But the Swiss inno-
vation system seems to be much closer to the forefront 
of cutting-edge innovation outside the digital domain. 
Nevertheless, overall, the relatively weak performance 
of the Swiss innovation system in digital technologies 
dominates. Figure  10 in “Appendix” illustrates this by 
showing average technological improvement rates for all 
patents no matter if they are digital or not. Switzerland 
again lags the leading countries’ average improvement 
rates substantially in almost all industries. In the machin-
ery industry, Swiss innovations are associated with an 

Fig. 4  Average technological improvement rates for digital patents of different industries and countries. Notes: Calculations based on improvement 
rates of 1757 technologies taken from Singh et al. (2021) and the definition for digital IPC classes from Inaba and Squicciarini (2017) that were 
both matched to USPTO patents between 2010 and 2015. The average technological improvement rate is normalized according to the value of 
Switzerland

28  Figure  4 in “Appendix” additionally shows the average improvement rates 
of digital patents for different industries, whose improvement rates are above 
a country’s 70th, 80th, and 90th percentile. When considering only these 
subsets of patents belonging to the technologies with the respective high-
est improvement rates, the backlog of Switzerland becomes stronger for the 
chemical, electrical, medical, and pharmaceutical industry. It is less pro-
nounced for the computer/ICT industry and, interestingly, disappears for 
the machinery industry. Besides this additional information, this robustness 
check also underpins our findings that Switzerland’s digital innovations occur 
mainly in technologies with rather low improvement rates compared to other 
countries.
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around 80% lower improvement rate compared to South 
Korea, which leads the ranking. In the electrical industry, 
Switzerland is around 25% behind the highest improve-
ment rate of Japan, and in the pharmaceutical industry it 
is lagging South Korea by close to 20%.29

Taken together, the descriptive evidence thus highlights 
a relatively weak engagement of Switzerland’s innovation 
system with digital technologies. Furthermore, digital 
innovations in Switzerland are less likely to occur in the 
fastest improving digital technologies compared to the 
leading countries. Together, these two patterns are the 
drivers for Switzerland’s rather low overall specialization 
toward technologies with high improvement rates, which 
suggests that the country’s innovation system tends to 
be a laggard regarding the most dynamically evolving 
technologies.

3.1 � Discussion of results
The question is whether Switzerland should be con-
cerned about these observed patterns. Since theoreti-
cal models typically suggest that technology diffusion is 
associated with the existence of first-moving innovators, 
early adopters, and laggards that catch up later, there is 
an argument that Swiss companies may simply focus on 
adoption instead of innovation in digital technologies.30 
However, since digital technologies may have special 
characteristics, being an adopter rather than an innova-
tor can have various consequences.31 To consider poten-
tial effects on longer-term economic competitiveness, it 
is therefore crucial to assess whether Switzerland’s cur-
rent backlog is a cause for concern.

On the one hand, R&D activities in digital and fast-
improving technologies are typically associated with local 
spillovers, higher wages, and substantial value creation 

in the future.32 Local R&D activities might also foster 
the technology adoption by local firms, which has been 
shown to depend on the existing overall knowledge stock 
regarding a new technology (e.g., Battisti et  al., 2009). 
Moreover, in the majority of cases, digital and non-digital 
innovations are likely to be increasingly mingled together 
to create new products and services. If digital compo-
nents become increasingly important in a wide range of 
products an ever greater share of the generated surplus 
might go to digital innovations.33

Another negative implication could arise if innovations 
compete (directly) with each other, i.e., are substitutes. In 
this case, faster-improving technologies might replace or 
lower the demand for products that are based on slower 
improving ones, since the former have usually new (and 
superior) features or perform much better (Hoisl et  al., 
2015). As a result, countries and their core industries 
might be at risk of being disrupted and leapfrogged if 
they focus on less rapidly advancing technologies.34 With 
this regard, Switzerland’s particularly pronounced digital 
backlog in some of its core industries (pharmaceuticals, 
chemicals, as well as the medical and machinery indus-
try) could be critical.35

Hence, there are several factors that may lead to a 
situation where Switzerland might be confronted with 
challenges and miss out on long-term benefits if its inno-
vation system is relatively weakly embracing novel digi-
tal technologies. Our empirical results support this view 
suggesting that fast-improving digital technologies are 
associated with a higher likelihood of breakthrough inno-
vations as measured with forward citations of patents. 
It might therefore be beneficial to try to shift the Swiss 
innovation system toward technologies that could be 
associated with higher value creation in the future (see, 
e.g., Redding, 1999 for a theoretical rationale).

29  Figure 11 in “Appendix” additionally shows the average improvement rates 
of all patents for different industries, whose improvement rates are above a 
country’s 70th, 80th, and 90th percentile. As for the digital domain (see Foot-
note 28), the backlog of Switzerland becomes more pronounced for the chem-
ical, electrical, medical, and pharmaceutical industry when focusing only on 
the patents that are part of the respective percentiles. In addition, the gap per-
sists in these subsamples for the computer/ICT industry and the machinery 
industry, but is of lower magnitude.
30  See, for example, Stokey (2021), Comin and Hobijn (2010), Hall (2004), 
Geroski (2000).
31  Some distinctive characteristics of digital technologies are, for example, 
supply-side economics of scale due to high fixed costs and low marginal 
costs, demand-side economies of scale arising from increased consumer 
benefits with larger numbers of users, and general-purpose properties 
resulting from digital technologies’ usefulness across very different indus-
tries (Brynjolfsson et al., 2021; Brynjolfsson & McAfee, 2014). Due to these 
characteristics of many ICT systems, it is, for example, particularly impor-
tant in the area of ICT to distinguish between innovation and production 
on the one hand and adoption and usage on the other. For example, enter-
prise resource planning platforms, such as those from ORACLE or SAP, are 
used by companies in a wide variety of industries, but are developed only by 
just a few (IT) companies, implying big market power.

32  See, for example, Bloom et  al. (2021), Baldwin (2018), Hoisl et  al. (2015), 
Hall et al. (2007).
33  In the manufacturing sector, for example, this could happen if networks 
and ecosystems of smart and connected products become widespread (Por-
ter & Heppelmann, 2015). In this case, it may no longer be innovations in 
the physical area that receive the largest share of the corresponding value 
added, but digital innovations, or more specifically, the provider of the net-
works and platforms as such (Bamberger & Lobel, 2017; Porter & Heppel-
mann, 2014).
34  See, e.g., Confraria et  al. (2021) or (Lee & Malerba, 2017) for a recent 
contribution, or Brezis et al. (1993) for an older seminal work.
35  It should be noted, however, that our analysis does not allow us to evalu-
ate whether or not different technologies compete with each other. Thus, 
our study cannot directly assess whether Swiss industries are at risk of being 
disrupted. Yet, due to the general-purpose nature of some digital technolo-
gies, it is very likely that at least some technologies in these industries will 
compete with older technologies or change from non-competitive to com-
petitive technologies in the (near) future.
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On the other hand, researchers have shown that lag-
gards may catch-up to first-movers by exploiting posi-
tive spillovers, skipping some stages of the development 
process, or by following completely different, yet more 
efficient, technological paths (see, e.g., Au & Kauffman, 
2001; Lee & Lim, 2001; Hoppe, 2000). In principle, eco-
nomic theory even provides an argument that it may be 
beneficial for a country to refrain from changing its spe-
cialization at all, because countries are likely to generate 
the highest welfare when they specialize on the basis of 
their comparative advantages. Following this logic, our 
results would then simply imply that the Swiss innova-
tion system has (at least until recently) its comparative 
advantage in more traditional, not-so-fast-improving 
fields. And an ongoing orientation toward these tech-
nological areas may well have advantages. For example, 
it might be easier to maintain a high competitiveness 
(e.g., by protecting some selected products with patents), 
because these areas do not require innovations that go 
beyond relatively slow and steady improvements.

In addition, due to specific characteristics of digital 
technologies (see Footnote 31), only a few so-called tech-
clusters and superstar companies are likely to benefit 
greatly, while everyone else tends not to (Chattergoon & 
Kerr, 2022; Tambe et al., 2020; Triulzi et al., 2020). Since 
Switzerland is currently not one of the leading innova-
tors in these areas, it could be advantageous to continue 
to stay out of such a tech-race and instead source ICT 
from the respective technology leaders. By doing so, 
Switzerland’s lacking orientation toward digital innova-
tions might be less serious as Swiss companies could sim-
ply relocate selected R&D activities to other countries 
or entirely source the required digital components from 
foreign firms (see, e.g., Harhoff et al., 2014; Griffith et al., 
2006). Doing so might mitigate Swiss companies’ risk of 
being leapfrogged and could thus sustain their interna-
tional competitiveness.36

Overall, potential implications of Switzerland’s back-
log in digital innovations are thus ambiguous. However, 
we would consider it more concerning if the follow-
ing conditions are met: First, we would expect more 
negative implications if the fraction of Swiss companies’ 
products that is or will be competing with digital alterna-
tives is large. Second, if it becomes apparent that digital 
parts of products will increasingly receive a larger share 
of the value creation. And third, if technological catch-
up becomes more difficult over time, for example, due 
to a particular “technological regime” (Lee & Lim, 2001) 
that is associated with digital technologies (e.g., network 
effects).

4 � Conclusion
Technologies evolve heterogeneously and differ substan-
tially with regard to their rate of technological improve-
ment. In this paper, we have combined different sources 
of information to study these differences in detail. Our 
empirical findings suggest that primarily digital tech-
nologies improve at very fast pace, and patents from the 
digital domain and those related to the fastest improving 
technologies are more strongly associated with break-
through innovations as measured with forward cita-
tions across industries. We then compare countries’ 
specialization patterns with regard to the digital domain 
and investigate their orientation toward fast-improving 
technologies. We find that Swiss innovations are neither 
particularly focused on the digital domain, nor toward 
the fastest improving digital technologies. In the non-
digital domain, the Swiss innovation system’s backlog to 
the leading countries is (much) less pronounced, but it is 
also not among the forerunners in rapidly evolving fields 
except for the medical and pharmaceutical industries. 
However, overall, the relatively weak engagement in the 
digital domain dominates and Switzerland seems to be 
among the laggards with respect to innovations in today’s 
fastest improving technologies.

Against this background, the question arises whether 
this could be of concern for Switzerland. As we have 
discussed, this might be especially the case if catch-up 
becomes more difficult, and if new technologies compete 
with older ones and thus represent substitutes. However, 
instead of being pure substitutes, it is likely that digital 
and non-digital innovations are increasingly merged 
together to create new products, services, and even 
entirely new ecosystems of connected smart products. A 
corresponding strategy for Switzerland in this scenario 
could be to focus on its core innovative strengths in the 
more tangible areas and to increasingly adapt digital 
innovations from abroad. However, this is not without 
risk, since digital innovations in particular are likely to 
be accompanied by high value creation, which Switzer-
land and its core manufacturing industries would then be 
missing out.

Overall, a crucial, yet open, question for the Swiss 
innovation system is thus how rapidly and smoothly it 
can adapt itself to fast-improving technologies. If catch-
up is rather fast, the above-mentioned concerns would 
become less threatening for Switzerland as a research 
location. Therefore, we consider it a very interesting ave-
nue for future research to evaluate the Swiss innovation 

36  Since we are interested in the effects on Switzerland as a business location, 
the ownership structure and thus the question of whether the innovations 
originate from different companies or not only play a subordinate role which 
we will not further discuss here.
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system’s rate of adaption toward differently evolving 
technologies. Another very interesting and challenging 
analysis would be to reveal underlying determinants that 
lead to the observed differences in countries’ innovation 
systems.

5 � Computational details
Most computations were performed at sciCORE scien-
tific computing center at the University of Basel (http://​
scico​re.​unibas.​ch). Data processing and visualizations 
were conducted in R (Version 4.1.3). We have mainly 
relied on the package collection tidyverse (Wickham 
et al., 2019) and estimated regressions using the package 
fixest (Bergé, 2018).

A Appendix
A.1 Technical appendix: estimating technological 
improvement rates
The paper builds on prior work by Singh et  al. (2021) 
who estimate technological improvement rates based 
on information encoded in patents. Their approach is 
motivated by an observation from Triulzi (2015), who 
notes that companies with more “central” patents in the 
semiconductor industry were able to catch up faster to 
technological leaders. Triulzi et al. (2020) show that this 
observation does not only apply to companies in the field 
of semiconductors, but that the “centrality” of a whole 
technology field within the patent universe is indicative 
of its improvement dynamics. Building on these insights, 
Singh et al. (2021) estimate improvement rates for 1757 
different technologies. In the following, we briefly outline 
how Singh et al. (2021) define and calculate the “central-
ity of patents” and how they use it to estimate technology 
improvement rates. This requires several steps. In a first 
step, Singh et  al. (2021) calculated for each patent i the 
total number of so-called incoming paths of its backward 
citations:

where LBWDi is the number of direct backward citations 
patent i has made (i.e., all patents that are cited by pat-
ent i) and the second term on the right-hand side the 
number of backward citations of all patents that can be 
reached from patent i by traveling backward within the 
patent citation network (see Fig.  5 for an illustration). 

(3)

incoming pathsi = LBWDi +

b∈reachableBWDi

LBWDb
,

In addition, Singh et  al. (2021) also calculated the total 
number of so-called outgoing paths of patent i along its 
forward citations up to three years after filing:

where LFWDi,t+3 is the direct number of forward cita-
tions patent i has received until three years after the pat-
ent has been granted. And the second term on the right 
is the number of forward citations of all patents that can 
be reached from patent i by traveling the patent citation 
network forward to three years after the patent has been 
granted (see again Fig.  5 for an illustration). In a next 
step, they use these two measures to calculate a patent’s 
“Search Path Node Pair” (SPNP) index. The SPNP index 
is calculated by multiplying Eqs. (3) and (4) with each 
other:

In order to avoid multiplications with zero, a constant 
of value one is added to each term.37 The SPNP index 
depends on the filing year of patent i, its technology, and 
the number of citations it mentioned and received. Thus, 
in order to separate the centrality of a patent from all of 
these factors, Singh et  al. (2021) calculate for each pat-
ent i the expected SPNP that includes all dependencies 
except the one they are interested in—namely, whether 
the patents that patent i cites and is cited by represent 
key nodes in the patent citation network. To achieve this, 
they calculate for each patent i 1000 different hypotheti-
cal SPNPi,t+3 values by randomly swapping the patents 
along the incoming and outgoing paths while taking 
into account various constraints. First, they randomly 
swap patents from the same USPC class as patent i with 
patents from the same class and filing year as the ones 
swapped. Second, they randomly swap patents from a 
different USPC class than patent i with patents from 
the pool of all other patents having the same filing year 
as the swapped ones. Due to this randomization, “each 
patent preserve the same number of citations made and 
received, the same age profile of its citations made and 
received and the same share of citations made that go to 
patents classified in the same class” (Singh et al., 2021, p. 
11). The only difference between the 1000 hypothetical 
worlds is that the cited and citing patents of patent i have 
different numbers of forward and backward citations.

(4)

outgoing pathsi,t+3 = LFWDi,t+3 +

∑

b∈reachableFWDi,t+3

LFWDb
,

SPNPi,t+3 = (incoming pathsi + 1) ∗ (outgoing pathsi,t+3 + 1).

37  The calculations of Singh et al. (2021) differ slightly from those from Triulzi 
et al. (2020). Instead of the SPNP of the focal patent i, Triulzi et al. (2020) use 
the average SPNP of all backward citations of patent i.

http://scicore.unibas.ch
http://scicore.unibas.ch
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To give an example, consider Fig.  5, where pi is the 
actual observed patent in the citation network. Assume 
that it has received one direct backward citation and two 
indirect backward citations along the incoming paths. 
In addition, it received two direct forward citations and 
one indirect forward citation along the outgoing paths. 
In contrast, the backward and forward paths of patent 
pi∗ have been artificially generated. By assumption of the 
randomization process, it has the same number of back-
ward and forward citations as patent pi . However, its ran-
domly assigned backward and forward cited patents have 
fewer citations, resulting in a lower SPNP score of nine 
instead of sixteen.

In order to obtain the expected SPNP value of patent i, 
Singh et al. (2021) take the average over the 1000 hypo-
thetical worlds. Using the resulting expected value and 
the corresponding standard deviation, they calculate the 
z-value of the SPNP for patent i as

Since the number of possible input paths increase over 
time, the z-values increase also as an artifact of the ran-
domization process. To account for this, they normalize 

zi =
SPNPi,t+3 − E(SPNPi,t+3)

σSPNPi,t+3

.

the z-values by using the rank quantile to which the 
z-value of patent i belongs according to its filing year and 
use this as the patent’s centrality value. In the next step, 
Singh et al. (2021) take the average among the centrality 
values of all patents assigned to a technology and use it in 
an OLS-regression to estimate a relationship between the 
observed technology improvement rates (based on “real-
world” metrics) for 30 technologies (which are the same 
as in Triulzi et  al. 2020) and the average of the central-
ity of the associated patents. Finally, Singh et  al. (2021) 
use this estimated relationship to predict the technology 
improvement rates for 1757 endogenously determined 
technologies, for which patent data exist but no “real-
world” metrics on technology progress are available. In 
doing so, they take the mean of the centrality values of 
all patents belonging to a technology, put it into the esti-
mated relationship, and eventually obtain an estimate for 
each of the 1757 endogenously determined technologies.

A.2 Additional graphs
See Figs. 6, 7, 8, 9, 10, 11.

Fig. 5  Illustration of the SPNP index and randomization process. 
Notes: Assume patent pi is the actual observed one in the citation 
network. It has received one direct backward citation, two indirect 
backward citations along the incoming paths and two direct forward 
citations and one indirect forward citation along the outgoing paths. 
Together with the added constants of one, this results in a SPNP of 
sixteen. In contrast, patent pi∗ has randomly created backward and 
forward paths. By construction, it has the same number of backward 
and forward citations as patent pi .  But in the example the randomly 
assigned backward cited patent only cites one patent and the 
randomly assigned forward cited patents were not cited at all. This 
results in a lower SPNP of nine

Fig. 6  Cumulative density of the patent-industry mapping 
probabilities. Notes: The graph shows the distribution of probabilities 
used to map patents to the Chemical, Computer/ICT, Electrical, 
Machinery, Medical, and Pharma industry. The data contain all patents 
used for our descriptive analysis. Specifically, it contains the filing 
years 2010–2015, the countries Canada, China, France, Germany, 
Japan, South Korea, Switzerland, the UK, and the USA
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Fig. 7  Digital patents per employee across industries and countries. Notes: The y-axis shows digital patents of the years 2010–2015 relative to 
the average number of employees between 2010 and 2015 per industry and country normalized by the value of Switzerland. For the number of 
employees, we used data from the OECD-STAN database. Unfortunately, we could not calculate the number of employees for Medical Technology 
and Computer/ICT, as these are composed of different NOGA sub-industries. Moreover, values for China are not included in the STAN database

Fig. 8  Average technological improvement rates for digital patents across industries and countries for different percentile subsets. Notes: 
Calculations based on improvement rates of 1757 technologies taken from Singh et al. (2021) and the definition for digital IPC classes from Inaba 
and Squicciarini (2017) that were both matched to USPTO patents between 2010 and 2015. The average technological improvement rate is 
normalized according to the value of Switzerland. The plot shows average improvement rates for patents whose improvement rate is above the xth 
percentile of a given country. For comparison, the dots labelled as all show the averages across all patents as used in the main text
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Fig. 9  Average technological improvement rates for non-digital patents across industries and countries. Notes: Calculations based on improvement 
rates of 1757 technologies taken from Singh et al. (2021) and the definition for digital IPC classes from Inaba and Squicciarini (2017) that were 
both matched to USPTO patents between 2010 and 2015. The average technological improvement rate is normalized according to the value of 
Switzerland

Fig. 10  Average technological improvement rates of all patents of different industries and countries. Notes: Calculations based on improvement 
rates of 1757 technologies taken from  Singh et al. (2021) that were matched to USPTO patents between 2010 and 2015. The average technological 
improvement rate is normalized according to the value of Switzerland
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A.3 Additional tables
See Tables 3, 4, 5, 6 and 7.

In Table  8, we use different time thresholds for for-
ward citations to indicate breakthrough innovations. 
While we take into account different citation practices 
between different technology areas by classifying break-
throughs per WIPO technology field and publication 
year, our threshold of five years could imply a systematic 
bias toward digital patents. As our results show, digital 
innovations have higher technology improvement rates 
and are therefore likely to spread and be adapted more 
quickly. This could imply that within a WIPO technology 
field digital patents are more often cited than other pat-
ents in the first years after publication. Using a time hori-
zon of five years, breakthroughs in the non-digital area in 
particular could therefore be missed. To check this, we 
also consider seven- and ten-year thresholds of forward 
citations as criteria for breakthrough innovations. As the 
results of Table 8 show, digital patents are still associated 
with a higher probability of containing a breakthrough 

innovation when using seven- and ten-year forward cita-
tion thresholds. Also, the size of the coefficient remains 
very robust. This suggests that the results are not driven 
by the possibility that non-digital patents require a longer 
time horizon to be cited.

In Table  9, we use an alternative measure to indicate 
breakthrough innovations based on the similarity and 
dissimilarity of patent texts as popularized by Kelly et al. 
(2021) and Arts et  al. (2021).38 In particular, Kelly et  al. 
(2021) calculate the importance of a patent by dividing 
the five-year forward by the five-year backward similarity 
of patent texts and propose that a higher value is a good 
indicator of breakthrough innovations. This is because a 
higher value can either emerge because of a lower back-
ward similarity, which is the case if, ceteris paribus, the 
patent text differs stronger from past patents, indicating 
that the invention is somehow of a completely new type. 
Or it can be due to a higher forward similarity, which 
means the patent text is, ceteris paribus, more similar 
to future patents. As argued by Kelly et  al. (2021), this 

Fig. 11  Average technological improvement rates of all patents of different industries for different percentile subsets. Notes: Calculations based on 
improvement rates of 1757 technologies taken from  Singh et al. (2021) that were matched to USPTO patents between 2010 and 2015. The average 
technological improvement rate is normalized according to the value of Switzerland. The plot shows average improvement rates for patents whose 
improvement rate is above the xth percentile of a given country. For comparison, the dots labeled as all show the averages across all patents as 
used in the main text

38  The corresponding data are available at https://​zenodo.​org/​record/​35159​
85#.​Yjssk​k2ZO38.

https://zenodo.org/record/3515985#.Yjsskk2ZO38
https://zenodo.org/record/3515985#.Yjsskk2ZO38
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Table 3  Improvement rates of the 10 top and bottom ranked technologies

The information of columns 1–3 is directly taken from Singh et al. (2021, p. 19–20). Column 4 is derived using information from Inaba and Squicciarini (2017)

Technology 
Code (UPC-
IPC)

Predicted k 
(technological 
improvement rate)

Technology Description Digital 
domain

719-G06F 216 Dynamic information exchange and support systems integrating multiple channels Yes

709-G06F 207 Network management specifically client-server applications Yes

709-G06Q 206 Network messaging system including advertisement Yes

709-H04L 203 Network address and access management Yes

726-H04L 200 Securing Enterprise Networks by system architecture (including security policies), user authentica-
tion, on the enterprise network, VPNs and defense mechanisms against DDoS attacks

Yes

726-G06F 195 Enterprise networks access management by individual users Yes

725-H04N 194 Content delivery in video distribution systems Yes

713-H04L 188 Data Encryption systems, including hybrid software/hardware systems and protocols for encryp-
tion, security associated with access and other security issues

Yes

380-H04N 180 methods and apparatus for mixing encrypted digital data with unencrypted digital data Yes

707-G06F 179 Data management (including databases and novel data structures) for enabling and automating 
ecommerce activities

Yes

280-B62H 3 Supports for two wheeled vehicle and locks No

280-B60S 3 Vehicle stabilization and miscellaneous operations No

280-B60D 3 Hitching assemblies for towing vehicles No

252-C10M 3 Lubricants No

24-A45F 3 Clips, hooks, straps, ties, etc., for holding household items No

227-B25C 3 Fastener driving apparatus—Power-assisted nail guns, staplers, etc. No

223-A41D 3 Physical manipulation of clothes, particularly hangers No

211-A47L 3 Racks and Trays for household items No

16-B25G 3 Handles No

84-G10D 3 Stringed, wind-based, percussion musical instruments No

Table 4  Industry names and NACE codes

The NACE codes considered are based on a manual selection guided by Eurostat (2008). The number of patents relates to granted USPTO patents from Canada, China, 
France, Germany, Japan, South Korea, Switzerland, the UK, and the USA granted between 1990 and 2015. Patents are assigned to industries based on the probabilistic 
matching described in De Rassenfosse et al. (2014). In doing so, each patent has been assigned to the industry with the highest matching probability. In addition, a 
patent is assigned to a Singh et al. (2021) technology based on its three-digit UPC and four-digit IPC code. If a patent belongs to more than one UPC-IPC code, it is 
assigned to each of it. The total number of distinguished patent-UPC-IPC combinations is shown in the last column

Industry NACE code rev. 2 (NOGA 08) Number of patents Number of 
patents-UPC-IPC 
combinations

Chemical 20 190,568 375,203

Computer/ICT 26.1, 26.11, 26.12, 26.2, 26.30, 62 825,259 1,373,899

Electrical 27 164,648 218,703

Machinery 28 497,150 697,244

Medical 26.6, 32.5 121,302 185,216

Pharma 21 145,763 422,139
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should be the case for a patent with a strong influence 
on future inventions. They use a list of significant inven-
tions such as stem cells, Google’s PageRank algorithm, 
and gene transfer in order to substantiate their claim. 
As they show, patents codifying significant inventions 
also have a high importance score. Following Kelly et al. 
(2021), Grampp et al. (2018), Gramke and Glauser (2017), 
we thus define a patent as containing a breakthrough or 
significant innovation if it is among the 10% having the 
highest importance score within its WIPO technology 
field and publication year. This indicator then provides an 

alternative measure for identifying breakthrough patents 
and allows us to examine the robustness of our regression 
results. In addition, we also use different thresholds (75th 
percentile and 99th percentile) to identify breakthrough 
innovations. As Table 9 shows, the results remain robust 
(Table 10).

In Table 11, we use different time thresholds for for-
ward citations to indicate breakthrough innovations 
across different industries. See text in Table 8 of Appen-
dix for a brief rationale for this table. As the results of 
the table show, digital patents are still associated with a 

Table 5  Number of patent UPC-IPC code combinations per country and industry

Patents are assigned to industries based on the probabilistic matching described in De Rassenfosse et al. (2014). In doing so, each patent has been assigned to 
the industry with the highest matching probability. Moreover, each patent has been assigned to the mentioned country if at least one inventor resided there (as 
mentioned in the inventor addresses of the patent texts). In addition, a patent is assigned to a Singh et al. (2021) technology based on its three-digit UPC and 
four-digit IPC code. If a patent belongs to more than one UPC-IPC code, it is assigned to each of it. Considering all these points leads to the shown total number of 
distinguished patent-UPC-IPC combinations per country and industry of the filing years 1990–2015

Inventor Country Chemical Computer/ICT Electrical Machinery Medical Pharma

Canada 7859 35,574 5705 20,173 3788 16,238

China 3532 27,776 5115 5607 688 5129

France 19,242 30,573 6805 18,985 4758 25,623

Germany 53,486 59,280 17,412 66,577 12,971 41,315

Japan 85,961 357,049 53,442 187,692 16,287 49,001

South Korea 9086 100,521 12,386 21,478 1420 7053

Switzerland 8201 7256 2294 9642 3121 12,360

UK 14,450 35,434 4304 19,431 5191 28,742

USA 194,429 764,742 115,567 364,249 142,314 278,710

Table 6  Distribution of countries’ patents across industries

Patents are assigned to industries using the probabilities calculated as proposed by De Rassenfosse et al. (2014), where we make a unique match based on the highest 
probability. In order to assign patents to countries, we assign the patent to each country for which an inventor address exists. The numbers show the countries’ share 
of USPTO patents for different industries of the filing years 2010–2015

Country Chemical Computer/ICT Electrical Machinery Medical Pharma Others

Canada 0.05 0.40 0.05 0.15 0.02 0.07 0.26

China 0.05 0.54 0.10 0.10 0.01 0.06 0.14

France 0.10 0.32 0.04 0.13 0.02 0.15 0.24

Germany 0.12 0.24 0.06 0.18 0.04 0.10 0.26

Japan 0.07 0.43 0.06 0.19 0.02 0.03 0.20

South Korea 0.06 0.59 0.08 0.10 0.01 0.03 0.13

Switzerland 0.10 0.20 0.05 0.14 0.06 0.22 0.23

UK 0.07 0.40 0.04 0.15 0.03 0.13 0.18

USA 0.06 0.38 0.05 0.14 0.05 0.08 0.24
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Table 7  Technological improvement rates and breakthrough innovations: time period estimates

All estimations include USPTO patents from Canada, China, France, Germany, Japan, South Korea, Switzerland, the UK, and the USA. If a patent has inventors from 
more than one of those countries, it will only be included once. The first model specification considers only USPTO patents filed between 1990 and 1999, the second 
patents filed between 2000 and 2009, and the third patents filed between 2010 and 2015. In order to show associations in percentage points, we have multiplied the 
FWD90-dummy by 100. The industry fixed effects are at the level of the six industries included in the analysis, namely Computer/ICT, Machinery, Medical, Electrical, 
Chemical, and Pharma. The standard errors in parentheses are also clustered at this industry level. Significance levels for the coefficients are indicated as: p∗ < 0.1 ; 
p∗∗ < 0.05 ; p∗∗∗ < 0.01

Dependent variable FWD90

Model 1990–1999 2000–2009 2010–2015

Digital 2.587*** 2.705*** 2.343**

(0.958) (0.656) (0.924)

Non-digital: k 0.223*** 0.102*** 0.092***

(0.038) (0.018) (0.024)

Digital: k 0.075*** 0.009*** 0.020***

(0.008) (0.003) (0.003)

Control variables

inv � � �

num_ctry � � �

Claims � � �

bwd_cits � � �

Fixed effects

Industry � � �

Year � � �

Year-Industry � � �

Observations 1,651,734 2,108,654 498,851

Table 8  Technological improvement rates and breakthrough innovations: different time spans of forward citations

All estimations include USPTO patents of the filing years 1990–2010 if at least one inventor has been from Canada, China, France, Germany, Japan, South Korea, 
Switzerland, the UK, or the USA. To better compare the results with the specification in the main text, the first specification (1) indicates a breakthrough innovation if the 
number of a patent’s five-year forward citations is among the top 10% per publication year and WIPO technology field. The estimation results differ slightly from those 
in the main text, as we only include patents up to 2010, in order to be able to use longer forward citation spans in the other two specifications. The second specification 
(2) indicates a breakthrough innovation if the number of a patent’s seven years forward citations is among the top 10% and the third (3) specification if the number 
of a patent’s 10-year forward citations is among the top 10%. In order to show associations in percentage points, we have multiplied the FWD/IMP-dummies by 100. 
The industry fixed effects are at the level of the six industries included in the interaction terms. The industry fixed effects are at the level of the six industries included 
in the analysis, namely Computer/ICT, Machinery, Medical, Electrical, Chemical, and Pharma. The standard errors in parentheses are also clustered at this industry level. 
Significance levels for the coefficients are indicated as: p∗ < 0.1 ; p∗∗ < 0.05 ; p∗∗∗ < 0.01

Dependent variables FWD90_5 FWD90_7 FWD90_10

Model (1) (2) (3)

Variables

Digital 1.863*** 1.868*** 1.770***

(0.428) (0.592) (0.607)

Control variables

inv � � �

num_ctry � � �

Claims � � �

bwd_cits � � �

Fixed effects

Industry � � �

Year � � �

Year-Industry � � �

Observations 3,714,719 3,714,719 3,714,719
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higher probability of containing a breakthrough inno-
vation for seven- and ten-year forward citation thresh-
olds across all considered industries. Interestingly, the 

strength of the association is actually increasing for the 
two important Swiss industries: Pharmaceuticals and 
Medical-Tech (Tables 12, 13, 14, 15, 16).

Table 11  Technological improvement rates and breakthrough 
innovations across industries: different time spans of forward 
citations

All estimations include USPTO patents of the filing years 1990–2010 if at least 
one inventor has been from Canada, China, France, Germany, Japan, South 
Korea, Switzerland, the UK, or the USA. To better compare the results with the 
specification in the main text, the first specification (1) indicates a breakthrough 
innovation if the number of a patent’s five-year forward citations is among 
the top 10% of its publication year and WIPO technology field. The estimation 
results differ slightly from those in the main text, as we only include patents up 
to 2010, in order to be able to use longer forward citation spans in the other two 
specifications. The second specification (2) indicates a breakthrough innovation 
if the number of a patent’s seven-year forward citations is among the top 
10% and the third specification (3) if the number of a patent’s 10-year forward 
citations is among the top 10%. In order to show associations in percentage 
points, we have multiplied the FWD/IMP-dummies by 100. The industry fixed 
effects are at the level of the six industries included in the interaction terms. 
The standard errors in parentheses are also clustered at this industry level. 
Significance levels for the coefficients are indicated as: p∗ < 0.1 ; p∗∗ < 0.05 ; 
p∗∗∗ < 0.01

Dependent 
variables

FWD90_5 FWD90_7 FWD90_10

Model (1) (2) (3)

Digital: Chemical 6.367*** (0.469) 5.839*** (0.436) 5.359*** (0.376)

Digital: Computer/
ICT

1.807*** (0.305) 1.458*** (0.216) 1.186*** (0.213)

Digital: Electrical 4.960*** (0.206) 5.695*** (0.238) 5.637*** (0.263)

Digital: Machinery 0.909*** (0.312) 0.673*** (0.213) 0.586*** (0.210)

Digital: Medical 3.666*** (0.476) 6.852*** (0.455) 7.357*** (0.401)

Digital: Pharma 1.416*** (0.431) 4.395*** (0.330) 4.615*** (0.230)

Control variables

inv � � �

num_ctry � � �

Claims � � �

bwd_cits � � �

Fixed effects

Industry � � �

Year � � �

Year-Industry � � �

Observations 2,825,155 2,825,155 2,825,155

Table 12  The digital domain and technological improvement 
rates: time period estimates across industries

All estimations include USPTO patents of the indicated filing years if at least one 
inventor has been from Canada, China, France, Germany, Japan, South Korea, 
Switzerland, the UK, or the USA. In order to show associations in percentage 
points, we have multiplied the FWD90-dummy by 100. The industry fixed 
effects are at the level of the six industries included in the interaction terms. 
The standard errors in parentheses are also clustered at this industry level. 
Significance levels for the coefficients are indicated as:  p∗ < 0.1 ; p∗∗ < 0.05

;p∗∗∗ < 0.01

Dependent 
variable

Technology improvement rate k

Model 1990–
2015

1990–
1999

2000–
2009

2010–2015

Variables

Digital:Chemical 9.910*** 10.786*** 11.554*** 12.434***

(0.561) (0.721) (0.400) (0.574)

Digital:Computer/
ICT

56.664*** 42.961*** 63.412*** 60.083***

(2.077) (4.720) (0.446) (1.221)

Digital:Electrical 12.368*** 9.883*** 14.058*** 13.984***

(0.534) (0.670) (0.351) (0.246)

Digital:Machinery 26.689*** 23.335*** 29.885*** 28.240***

(0.828) (0.925) (0.219) (0.424)

Digital:Medical 5.219*** 1.899*** 7.777*** 8.795***

(0.800) (0.375) (0.295) (1.053)

Digital:Pharma 4.216*** 3.582*** 4.677*** 5.607***

(0.183) (0.123) (0.162) (0.553)

Fixed effects

Industry � � � �

Year � � � �

Year-Industry � � � �

Observations 3,243,802 1,207,095 1,651,118 385,589
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Table 13  Technological improvement rates and breakthrough innovations: breakthrough measures across industries (part I)

All estimations include USPTO patents of the filing years 1990–2015 if at least one inventor has been from Canada, China, France, Germany, Japan, South Korea, 
Switzerland, the UK, or the USA. Similar to the main text, the specifications use the number of forward citations as an indication of breakthrough innovations. The 
first model specification indicates a breakthrough innovation if the number of a patent’s five-year forward citations is among the top 25%, the second specification is 
similar to the used specifications in the main text, and the third specification if the number of a patent’s five-year forward citations is among the top one percent. In 
order to show associations in percentage points, we have multiplied the FWD-dummies by 100. The industry fixed effects are at the level of the six industries included 
in the interaction terms. The standard errors in parentheses are also clustered at this industry level. Significance levels for the coefficients are indicated as: p∗ < 0.1 ; 
p∗∗ < 0.05 ; p∗∗∗ < 0.01

Dependent variables FWD75 FWD90 FWD99
Model (1) (2) (3)

Variables

Digital:Chemical 12.053*** (0.931) 8.035*** (0.704) 1.630*** (0.346)

Digital:Computer/ICT 2.363*** (0.338) 2.062*** (0.232) 0.292*** (0.066)

Digital:Electrical 8.078*** (0.712) 6.985*** (0.391) 1.607*** (0.102)

Digital:Machinery 1.717*** (0.496) 1.260*** (0.254) 0.243*** (0.053)

Digital:Medical 10.772*** (0.765) 7.333*** (0.690) 1.675*** (0.335)

Digital:Pharma 3.141*** (0.502) 1.501*** (0.432) 0.330***   (0.140)

Non-digital: k:Chemical 0.348*** (0.030) 0.191*** (0.021) 0.015*** (0.005)

Digital: k:Chemical 0.008 (0.017) − 0.005 (0.020) − 0.010**  (0.004)

Non-digital: k:Computer/ICT 0.148*** (0.028) 0.086*** (0.017) 0.007*    (0.004)

Digital: k:Computer/ICT 0.035**  (0.016) 0.020*** (0.007) 0.003**   (0.001)

Non-digital: k:Electrical 0.651*** (0.040) 0.415*** (0.030) 0.063*** (0.006)

Digital: k:Electrical 0.220*** (0.027) 0.124*** (0.016) 0.028*** (0.009)

Non-digital: k:Machinery 0.241*** (0.022) 0.167*** (0.016) 0.029*** (0.004)

Digital: k:Machinery 0.044*   (0.024) 0.039*** (0.014) 0.010*** (0.004)

Non-digital: k:Medical 0.398*** (0.095) 0.227*** (0.044) 0.024**  (0.011)

Digital: k:Medical 0.003 (0.047) 0.020 (0.023) 0.007 (0.012)

Non-digital: k:Pharma 0.172*** (0.052) 0.087**   (0.040) 0.012 (0.011)

Digital: k:Pharma 0.078*    (0.046) 0.059*    (0.034) 0.015 (0.012)

Control variables

inv � � �

num_ctry � � �

Claims � � �

bwd_cits � � �

Fixed effects

Industry � � �

Year � � �

Year-Industry � � �

Observations 3,243,802 3,243,802 3,243,802
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Table 14  Technological improvement rates and breakthrough innovations: breakthrough measures across industries (part II)

All estimations include USPTO patents of the filing years 1990–2015 if at least one inventor has been from Canada, China, France, Germany, Japan, South Korea, 
Switzerland, the UK, or the USA. In order to proxy breakthrough innovations, the three specifications (1)–(3) consider an importance measure based on patent text 
similarity as proposed by Kelly et al. (2021). For details, see the accompanying text. In particular, the specification of column (1) indicates a breakthrough innovation if 
the patent’s importance measure is among the top 25%, the specification of column (2) if it is among the top 10%, and the one of column (3) if it is among the top one 
percent. In order to show associations in percentage points, we have multiplied the IMP-dummies by 100. The industry fixed effects are at the level of the six industries 
included in the interaction terms. The standard errors in parentheses are also clustered at this industry level. Significance levels for the coefficients are indicated as: 
p∗ < 0.1 ; p∗∗ < 0.05 ; p∗∗∗ < 0.01

Dependent variables IMP75 IMP90 IMP99
Model (1) (2) (3)

Variables

Digital:Chemical 11.599*** (2.157) 9.024*** (1.262) 1.611*** (0.256)

Digital:Computer/ICT 7.100***  (0.882) 1.736*** (0.314) 0.027 (0.039)

Digital:Electrical 28.908*** (2.004) 13.594*** (0.686) 0.442*** (0.115)

Digital:Machinery 4.916***  (1.199) 5.103***  (0.774) 0.804*** (0.071)

Digital:Medical 27.020*** (2.060) 13.546*** (0.969) − 0.104    (0.240)

Digital:Pharma 4.612*** (1.135) − 1.333*    (0.791) − 1.661*** (0.186)

Non-digital: k:Chemical − 0.055    (0.045) − 0.005 (0.019) 0.003 (0.007)

Digital:Chemical − 0.034** (0.014) − 0.002 (0.025) 0.014 (0.010)

Non-digital: k:Computer/ICT 0.274*** (0.038) 0.088*** (0.016) 0.005*** (0.001)

Digital:Computer/ICT 0.135*** (0.010) 0.068*** (0.008) 0.008*** (0.001)

Non-digital: k:Electrical 1.627*** (0.089) 0.795*** (0.046) 0.079*** (0.006)

Digital:Electrical 0.349*** (0.019) 0.262*** (0.023) 0.075*** (0.010)

Non-digital: k:Machinery 0.551*** (0.083) 0.406*** (0.059) 0.056*** (0.007)

Digital:Machinery 0.158*** (0.031) 0.082*** (0.024) 0.016***(0.005)

Non-digital: k:Medical 0.419*** (0.038) 0.159*** (0.034) 0.005 (0.005)

Digital:Medical 0.277*** (0.027) 0.299*** (0.049) 0.130*** (0.030)

Non-digital: k:Pharma − 0.122    (0.089) − 0.151** (0.071) − 0.016    (0.014)

Digital:Pharma 0.182*** (0.046) 0.247*** (0.041) 0.133*** (0.027)

Control variables

inv � � �

num_ctry � � �

Claims � � �

bwd_cits � � �

Fixed effects

Industry � � �

Year � � �

Year-Industry � � �

Observations 3,243,795 3,243,795 3,243,795
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Table 15  Technological improvement rates and breakthrough innovations: heterogeneity between the digital and non-digital 
domain

All estimations include USPTO patents from Canada, China, France, Germany, Japan, South Korea, Switzerland, the UK, and the USA of the filing years 1990–2015. If a 
patent has inventors from more than one of those countries, it will only take into account once. The first model specification shows estimations across all industries. 
The second considers interactions for selected industries. In order to show associations in percentage points, we have multiplied the FWD90-dummy by 100. The 
industry fixed effects are at the level of the six industries included in the interaction terms. The standard errors in parentheses are also clustered at this industry level.
Significance levels for the coefficients are indicated as: p∗ < 0.1 ; p∗∗ < 0.05 ; p∗∗∗ < 0.01

Dependent variable FWD90

Model (1) (2)

Variables

Digital 2.991*** (0.691)

k 0.148*** (0.022)

Digital: k − 0.125*** (0.023)

Digital: Chemical 8.035*** (0.704)

Digital: Computer/ICT 2.062*** (0.232)

Digital: Electrical 6.985*** (0.391)

Digital: Machinery 1.260*** (0.254)

Digital: Medical 7.333*** (0.690)

Digital: Pharma 1.501*** (0.431)

k:Chemical 0.191*** (0.021)

k:Computer/ICT 0.086*** (0.017)

k:Electrical 0.415*** (0.030)

k:Machinery 0.167*** (0.016)

k:Medical 0.227*** (0.044)

k:Pharma 0.087**  (0.039)

Digital: k:Chemical − 0.196*** (0.024)

Digital: k:Computer/ICT − 0.067*** (0.012)

Digital: k:Electrical − 0.290*** (0.036)

Digital: k:Machinery − 0.128*** (0.014)

Digital: k:Medical − 0.207*** (0.042)

Digital: k:Pharma − 0.028 (0.037)

Control variables

inv � �

num_ctry � �

Claims � �

bwd_cits � �

Fixed effects

Industry � �

Year � �

Year-Industry � �

Observations 4,259,239 3,243,802
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Table 16  Breakdown of the average technology improvement rate by digital, non-digital, and all patents for different countries and 
industries

Industry Country µnon−dig sharenon−dig µdig sharedig µall

Chemical South Korea 11.9 * 0.82 + 27.2 * 0.18 = 14.7

Chemical Japan 11.9 * 0.80 + 24.1 * 0.20 = 14.4

Chemical China 11.3 * 0.91 + 27.8 * 0.09 = 12.9

Chemical UK 11.8 * 0.95 + 32.8 * 0.05 = 12.8

Chemical Canada 11.2 * 0.87 + 16.9 * 0.13 = 12.0

Chemical USA 11.4 * 0.94 + 21.9 * 0.06 = 12.0

Chemical Germany 11.3 * 0.96 + 25.3 * 0.04 = 11.9

Chemical Switzerland 10.8 * 0.97 + 22.4 * 0.03 = 11.2

Chemical France 10.5 * 0.97 + 22.7 * 0.03 = 10.8

Computer/ICT Canada 20.3 * 0.03 + 95.5 * 0.97 = 92.9

Computer/ICT UK 20.5 * 0.03 + 91.8 * 0.97 = 89.5

Computer/ICT USA 20.1 * 0.05 + 90.9 * 0.95 = 87.5

Computer/ICT Switzerland 18.0 * 0.07 + 83.1 * 0.93 = 78.6

Computer/ICT China 17.7 * 0.09 + 79.9 * 0.91 = 74.2

Computer/ICT France 18.7 * 0.05 + 71.5 * 0.95 = 68.9

Computer/ICT Germany 19.2 * 0.07 + 72.3 * 0.93 = 68.7

Computer/ICT South Korea 16.7 * 0.04 + 63.5 * 0.96 = 61.6

Computer/ICT Japan 18.6 * 0.07 + 60.8 * 0.93 = 57.9

Electrical Japan 14.7 * 0.83 + 26.8 * 0.17 = 16.7

Electrical China 15.1 * 0.88 + 24.4 * 0.12 = 16.2

Electrical South Korea 13.6 * 0.87 + 30.3 * 0.13 = 15.7

Electrical Germany 13.8 * 0.87 + 25.4 * 0.13 = 15.3

Electrical France 13.3 * 0.82 + 24.2 * 0.18 = 15.3

Electrical USA 12.9 * 0.87 + 28.0 * 0.13 = 14.9

Electrical UK 13.1 * 0.88 + 22.5 * 0.12 = 14.2

Electrical Canada 12.9 * 0.90 + 26.3 * 0.10 = 14.2

Electrical Switzerland 12.6 * 0.94 + 23.4 * 0.06 = 13.2

Machinery South Korea 13.6 * 0.46 + 45.4 * 0.54 = 30.9

Machinery Japan 14.6 * 0.38 + 36.0 * 0.62 = 27.9

Machinery China 9.8 * 0.61 + 45.3 * 0.39 = 23.7

Machinery UK 10.4 * 0.75 + 49.8 * 0.25 = 20.4

Machinery USA 10.8 * 0.72 + 42.7 * 0.28 = 19.9

Machinery Canada 9.6 * 0.74 + 40.2 * 0.26 = 17.4

Machinery France 10.5 * 0.79 + 42.9 * 0.21 = 17.3

Machinery Switzerland 10.5 * 0.80 + 42.4 * 0.20 = 16.8

Machinery Germany 12.2 * 0.86 + 38.1 * 0.14 = 15.8

Medical UK 19.3 * 0.88 + 44.8 * 0.12 = 22.5

Medical Japan 19.4 * 0.77 + 26.2 * 0.23 = 21.0

Medical South Korea 18.5 * 0.80 + 27.6 * 0.20 = 20.3

Medical Germany 18.9 * 0.82 + 26.2 * 0.18 = 20.2

Medical France 17.8 * 0.90 + 38.8 * 0.10 = 19.9

Medical Canada 17.7 * 0.86 + 33.3 * 0.14 = 19.9

Medical USA 18.9 * 0.91 + 28.4 * 0.09 = 19.8

Medical Switzerland 18.8 * 0.86 + 22.6 * 0.14 = 19.3

Medical China 15.9 * 0.82 + 30.7 * 0.18 = 18.6

Pharma South Korea 7.8 * 0.86 + 19.7 * 0.14 = 9.4

Pharma Japan 8.0 * 0.88 + 15.1 * 0.12 = 8.9

Pharma USA 7.8 * 0.94 + 12.8 * 0.06 = 8.1
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